
Memory-E�cient Flow Accumulation Using a Look-Around

Approach and Its OpenMP Parallelization⋆

Huidae Cho
a,∗

aDepartment of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, USA

ART ICLE INFO

Keywords:
Flow accumulation
Watershed
Hydrology
GIS
Parallel computing
OpenMP

ABSTRACT

This study proposes the Memory-E�cient Flow Accumulation (MEFA)
algorithm using a �look-around� approach. In a shared-memory model such
as the one provided by OpenMP, it is important to reduce expensive shared
memory writes for better multi-threaded performance. The new proposed
algorithm reduces the amount of memory allocation and write operations on
shared data by eliminating the need for intermediate read-write matrices and
writing to output cells only once. This pattern of reduced read-write memory
usage was applied to the existing source code of a benchmark algorithm with
minimum changes to show its performance impacts. The new approach was
e�cient in improving the compute time by reducing memory requirements.
The proposed algorithm performed 45% and 19% better in compute time
than its OpenMP and MPI benchmark algorithms, respectively, using less
memory.

Highlights

� A memory-e�cient �ow accumulation algorithm was presented.

� The memory requirements of benchmark algorithms were analyzed.

� The new approach improved the compute time by reducing memory requirements.

� It performed 45% better in compute time than its OpenMP benchmark algorithm.

� It also performed 19% better in compute time than its MPI benchmark algorithm.
⋆

NOTICE: This is the author's version of a work that was accepted for publication in Environmental Modelling
& Software. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be re�ected in this document. Changes may have
been made to this work since it was submitted for publication. A de�nitive version was subsequently published in
Environmental Modelling & Software, 105771 (July 2023) doi:10.1016/j.envsoft.2023.105771.

CITATION: Cho, H., 2023. Memory-e�cient �ow accumulation using a look-around approach and its OpenMP
parallelization. Environmental Modelling & Software, 105771.

© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.
org/licenses/by-nc-nd/4.0.

∗Corresponding author

hcho@nmsu.edu (H. Cho)

https://hcho.isnew.info/ (H. Cho)
orcid(s): 0000-0003-1878-1274 (H. Cho)

https://twitter.com/HuidaeCho (H. Cho)

https://www.linkedin.com/profile/view?id=HuidaeCho (H. Cho)

Cho: Preprint submitted to Elsevier Page 1 of 36

https://doi.org/10.1016/j.envsoft.2023.105771
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
https://hcho.isnew.info/
https://twitter.com/HuidaeCho
https://www.linkedin.com/profile/view?id=HuidaeCho


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Software and data availability

MEFA (Memory-E�cient Flow Accumulation)

� Developer: Huidae Cho

� Contact information: hcho@nmsu.edu

� Year �rst available: 2023

� Program language: C

� Cost: Free

� Software availability: https://github.com/HuidaeCho/mefa

� License: GPL-3.0

MEFA-HP (MEFA as an additional algorithm for HPFA)

� Developer: Huidae Cho (modi�ed HPFA for MinGW-w64 compilation using the C API of

GDAL and added MEFA as part of it for benchmarking)

� Contact information: hcho@nmsu.edu

� Year �rst available: 2023

� Program language: C++

� Cost: Free

� Software availability: https://github.com/HuidaeCho/high_performance_flow_accumulation

� License: Not speci�ed by the original author

HPFA (High-Performance Flow Accumulation)

� Developer: Kotyra et al.

� Contact information: bartlomiej.kotyra@poczta.umcs.lublin.pl

� Year �rst available: 2020

� Program language: C++

� Cost: Free

� Software availability: https://github.com/bkotyra/high_performance_flow_accumulation

� License: Not speci�ed

PFA (ParallelFlowAccum)

� Developer: Barnes

� Contact information: rbarnes@umn.edu

� Year �rst available: 2015

� Program language: C++

� Cost: Free

� Software availability: https://github.com/r-barnes/richdem

� License: GPL-3.0

Cho: Preprint submitted to Elsevier Page 2 of 36

mailto:hcho@nmsu.edu
https://github.com/HuidaeCho/mefa
mailto:hcho@nmsu.edu
https://github.com/HuidaeCho/high_performance_flow_accumulation
mailto:bartlomiej.kotyra@poczta.umcs.lublin.pl
https://github.com/bkotyra/high_performance_flow_accumulation
mailto:rbarnes@umn.edu
https://github.com/r-barnes/richdem


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

FastFlow (Zhou's algorithm)

� Developer: Zhou et al.

� Contact information: zhouguiyun@uestc.edu.cn

� Year �rst available: 2015

� Program language: C++

� Cost: Free

� Software availability: https://github.com/zhouguiyun-uestc/FastFlow (original version),

https://github.com/HuidaeCho/FastFlow (modi�ed version for MinGW-w64 compilation

using the C API of GDAL)

� License: MIT

Pre-/post-processing scripts

� Developer: Huidae Cho

� Contact information: hcho@nmsu.edu

� Year �rst available: 2023

� Program language: Bash

� Cost: Free

� Software availability: https://data.isnew.info/mefa.html#-pre-post-processing-scripts

� License: GPL-3.0

Input �ow direction �les

� PFA: https://data.isnew.info/mefa/richdir.zip

� Other algorithms: https://data.isnew.info/mefa/fdr.zip

Output �ow accumulation �les

� MEFA: https://data.isnew.info/mefa/meac.zip

� MEFA-F64: https://data.isnew.info/mefa/mef64ac.zip

� MEFA-HP: https://data.isnew.info/mefa/mefahp.zip

� HPFA: https://data.isnew.info/mefa/hpfa.zip

� PFA: https://data.isnew.info/mefa/richacc.zip

� FastFlow: https://data.isnew.info/mefa/ffaczhou.zip

1. Introduction

With ever-advancing remote sensing technologies, the amount of geospatial data collected on

a regular basis has continously been increasing and its resolution has signi�cantly improved over

the past decades (Chen et al., 2022; Zhou et al., 2019; Sun et al., 2018). Such a rapid growth

Cho: Preprint submitted to Elsevier Page 3 of 36

mailto:zhouguiyun@uestc.edu.cn
https://github.com/zhouguiyun-uestc/FastFlow
https://github.com/HuidaeCho/FastFlow
mailto:hcho@nmsu.edu
https://data.isnew.info/mefa.html#-pre-post-processing-scripts
https://data.isnew.info/mefa/richdir.zip
https://data.isnew.info/mefa/fdr.zip
https://data.isnew.info/mefa/meac.zip
https://data.isnew.info/mefa/mef64ac.zip
https://data.isnew.info/mefa/mefahp.zip
https://data.isnew.info/mefa/hpfa.zip
https://data.isnew.info/mefa/richacc.zip
https://data.isnew.info/mefa/ffaczhou.zip


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

of geospatial data in terms of both quantity and quality has resulted in a need for more e�cient

computational algorithms for processing big Geographic Information System (GIS) data to calculate

terrain-based parameters. Among others, �ow accumulation plays an important role in hydrological

and topographic analysis (Kotyra et al., 2021; Zhou et al., 2019; Barnes, 2017; Su et al., 2015),

environmental modeling (Kotyra et al., 2021), and Earth surface simulation (de Jong et al., 2022).

Calculation of this important parameter is done either directly on a Digital Elevation Model (DEM)

or on a �ow direction matrix (Zhou et al., 2019). In the past, several algorithms have been developed

to make this computational task more e�cient. They can be classi�ed as either serial or parallel

algorithms.

Serial algorithms use a single Central Processing Unit (CPU) core in one computer and typically

require loading the entire input data in the memory while some of them allows swapping of it

between the memory and storage to handle large data at the cost of a performance hit (e.g.,

r.watershed from GRASS GIS, Neteler et al., 2012). Recently, Zhou et al. (2019) reviewed four serial

algorithms with a time complexity of O(N) (Wang et al., 2011; Jiang et al., 2013; Su et al., 2015;

Choi, 2012) and introduced a new serial algorithm that performs faster than the four benchmark

ones. However, as the size of data grows, it becomes computationally impractical to calculate this

parameter on a single computer when the input, intermediate, and �nal outputs are too big to �t

into the memory.

Parallel algorithms focus on improving its computational e�ciency using various parallel or

distributed computing techniques mainly because of the ine�ciency of serial algorithms (Qin and

Zhan, 2012) or the size of input data (Barnes, 2017; Kotyra et al., 2021). For example, researchers

have used the Open Multi-Processing (OpenMP) Application Programming Interface (API) (Dagum

and Menon, 1998) (e.g., Kotyra et al., 2021), the Message Passing Interface (MPI) (Message Passing

Interface Forum, 2021) (e.g., Barnes, 2017; Do et al., 2011; Wallis et al., 2009), General-Purpose

Computing on Graphics Processing Units (GPGPU) (e.g., Rueda et al., 2016; Sten et al., 2016; Qin

and Zhan, 2012; Ortega and Rueda, 2010), and Asynchronous Many-Tasks (AMT) (e.g., de Jong

et al., 2022). However, it is still challenging to parallelize this task e�ectively (Kotyra et al., 2021)

because of the spatial dependency of its output values on the input data (de Jong et al., 2022) and

the global nature of its computation, prohibiting moving-window-based local approaches.

Cho: Preprint submitted to Elsevier Page 4 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Much attention has been paid to the distributed computation of �ow accumulation using

multiple computers to handle large data that cannot �t into one machine's memory (de Jong

et al., 2022; Barnes, 2017; Do et al., 2011; Wallis et al., 2009). However, to the best of the

author's knowledge, not much research has been done to reduce memory requirements to be able

to process larger-than-before data on one computer and improve memory e�ciency for single-node

parallelization. The objective of this study is to develop a new �ow accumulation algorithm that

requires the bare minimum memory footprint (ideally, only input and output data loaded into

the main memory) and reduces expensive memory write operations as much as possible for faster

OpenMP performance.

The study reviews one serial, one OpenMP, and one MPI algorithms that are known or claim

to be faster than others. All these benchmark algorithms use an intermediate output matrix to

store and update dependency information to keep track of cell computations. They also write to

output cells once or more. These repeated read-write operations on a cell by multiple threads in

OpenMP programs can degrade performance because of frequent �false sharing� where unnecessary

data sharing occurs among threads, or even corrupt shared memory through �data races� if a parallel

algorithm is not carefully implemented. The new memory-e�cient algorithm seeks to reduce the

impacts of false sharing and data races by lessening the amount of required data that is read and

written by multiple threads. Memory e�ciency in this context means both a less memory footprint

(so larger data can �t in the memory and be processed) and less shared write operations (so handling

larger data is e�cient).

2. Benchmark algorithms

Table 1 shows the benchmark algorithms used in this study and the proposed algorithm called

Memory-E�cient Flow Accumulation (MEFA). High-Performance Flow Accumulation Top-Down

Parallel (HPFA) (Kotyra et al., 2021) and ParallelFlowAccum (PFA) (Barnes, 2017) are parallel

algorithms while FastFlow Zhou (FastFlow) (Zhou et al., 2019) is a serial algorithm. All three are

written in C++. Kotyra et al. (2021) compared di�erent serial and parallel approaches for their

algorithms and concluded that the top-down parallel version works best, so HPFA in this study

refers to their top-down parallel algorithm. Barnes (2017) compared his algorithm PFA with another

Cho: Preprint submitted to Elsevier Page 5 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table 1

Benchmark and proposed algorithms. M(S,N, P ): Minimum memory consumption in bytes measured in the
number and byte size of matrix cells, S: Size of the �ow accumulation data type, N : Number of cells, P : Number
of processes for PFA, ∗: Using OpenMP, †: Using MPI, ‡: Less-memory version, §: More-memory version with a
write-once read-only intermediate matrix, ¶: Square input assumed for simpli�cation, ∥: Square blocks assumed
for simpli�cation.

Algorithm Computing M(S,N, P ) Ridge cell value Reference

MEFA Parallel∗ (S + 1)N‡ or (S + 2)N§ 1 This study

HPFA Parallel∗ (S+2)
[
N + 4

√
N + 4

]
+24
√
N¶ 0 Kotyra et al. (2021)

PFA Distributed†
[
(S + 2)N + 8

(√
N(P − 1)− P + 1

)]
∥ 1 Barnes (2017)

FastFlow Serial (S + 2)N 1 Zhou et al. (2019)

distributed algorithm AreaD8 (Wallis et al., 2009) and showed that PFA is faster and scales better

than AreaD8. Similarly, Zhou et al. (2019) implemented �ve di�erent serial algorithms and their

own Zhou's algorithm was fastest; therefore, FastFlow hereinafter refers to Zhou's algorithm.

The function M(S,N, P ) shows the minimum memory consumption in bytes of an algorithm

measured in the number and byte size of matrix cells. Unlike the other algorithms, PFA uses a

wider data type for �ow accumulation and it would be unfair to use its memory footprint as is.

The size S of the �ow accumulation data type is used instead for better memory comparisons.

Here, the numbers of rows and columns of the �ow direction matrix are m and n, respectively, N

is the total number of cells (mn), and P is the number of processes for PFA and does not exist for

the other algorithms, which use a shared-memory model. For PFA, memory is not shared among

multiple processes in this distributed model and each process requires some overhead. This memory

cost function admittedly simpli�es the total memory footprint of an algorithm by ignoring memory

consumed by auxiliary variables, operational instructions, function calls, etc., but it can be useful in

comparing the minimum memory consumption among di�erent algorithms when it is important to

reduce the amount of expensive memory access, especially write operations, in parallel computing

(Zhao et al., 2022). Table 1 shows that the parallel benchmark algorithms HPFA and PFA require

more memory than FastFlow and MEFA, and MEFA can be implemented with less memory than

FastFlow.

Cho: Preprint submitted to Elsevier Page 6 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

2.1. HPFA

For parallelism, HPFA (Kotyra et al., 2021) uses the OpenMP API (Dagum and Menon, 1998).

HPFA utilizes the shared-memory model of OpenMP to share the �ow direction matrix (read

only), inlet number matrix (read and write), and �ow accumulation matrix (read and write) among

multiple threads. It uses arrays of arrays (jagged arrays) for storing matrices in memory. In a jagged

array, rows in a matrix can be stored in many disjoint contiguous linear arrays row by row that are

separate from each other in the memory space. In addition to the total memory for matrix cells,

jagged arrays take up additional memory to store pointers to linear row arrays. This algorithm has

a linear time complexity of O(N) (Kotyra et al., 2021).

It starts with creating a jagged array in the same dimension as the �ow direction matrix. This

jagged array called the inlet number matrix stores the number of in�owing upstream neighbors

at each cell. Computation of this matrix is done in parallel because each thread writes to its own

partition of the matrix. Ridge cells with no in�owing neighbors are assigned −2 in this process. A

new jagged array is created for storing the output �ow accumulation matrix. Traversing the entire

inlet number matrix in parallel, for each ridge cell �agged with −2 and with a �ow direction, the

algorithm starts tracing down its �ow path. The inlet number of each visited cell is �agged with

−1. The �ow accumulation value of the same cell plus 1 is accumulated in its direct downstream

cell and the inlet number of that downstream cell is decremented by 1. This down-tracing process

is repeated while the downstream inlet number is 0 (all in�owing neighbors are processed) and it

has a �ow direction.

Unlike the other benchmark algorithms, it only counts upstream contributing cells without the

center cell, so ridge cells are assigned 0 instead of 1. Also, it �lls null cells from the �ow direction

matrix with 0. In this algorithm, each �ow accumulation cell can be written to more than once by

one or more threads because there can be multiple top-down �ow paths to a cell. Moreover, many of

those cells need to be read by multiple threads as they are visited. Because of the relaxed-consistency

model of OpenMP, each thread has its own view of shared data, which may not always be consistent

with the views of other threads until implicit or explicit �ush operations synchronize the views of

all the threads. Since the order of threads tracing di�erent �ow paths is non-deterministic, the �nal

result can be non-deterministic as well without data synchronization. This phenomenon is called a

Cho: Preprint submitted to Elsevier Page 7 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

data race. Kotyra et al. (2021) addressed this issue by both updating the �ow accumulation matrix

and capturing the inlet number matrix atomically.

This algorithm uses �framed matrices� that allocate two extra rows and two extra columns

for jagged arrays to avoid explicit boundary checking using conditional statements. For this

reason, any matrix in this algorithm has (m + 2)(n + 2) = N + 2(m + n) + 4 cells, not N .

HPFA requires three jagged arrays including the �ow direction matrix of type unsigned char

(1B in memory size), the inlet number matrix of type char (1B), and the �ow accumulation

matrix of type unsigned int (S = 4). Given the number of cells N + 2(m + n) + 4 and the

size of additional row pointers in a jagged array in 64-bit systems 8mB (i.e., each memory

pointer takes up 64 bit or 8B), the minimum memory consumption measured only in the number

and byte size of matrix cells is M(S,m, n) = {(1 + 1 + S) [N + 2(m+ n) + 4] + 3 · 8m} B =

{(S + 2) [N + 2(m+ n) + 4] + 24m} B. For simplicity, assume a square input raster with m = n =
√
N and simplify the memory function to M(S,N) =

{
(S + 2)

[
N + 4

√
N + 4

]
+ 24
√
N
}
B.

2.2. PFA

PFA (Barnes, 2017) uses MPI (Message Passing Interface Forum, 2021) for distributed

computing. Its parallelism approach is di�erent from that of HPFA in that the input �ow direction

matrix is partitioned into blocks across multiple processes. For this reason, PFA is suitable for large

watersheds whose data cannot �t in one computer's memory. It has a worst-case time complexity

of O(τnτ/P ) where τ is the number of tiles and nτ is the number of cells per tile (Barnes, 2017).

It uses a producer-consumers model for distributed computing where the producer process

generates and distributes jobs to consumer processes, and later aggregates information from the

consumers. Each consumer process starts with creating an array with the number of upstream

contributing cells, just like HPFA, but it also pushes ridge cells into a queue. PFA calls this matrix

a dependencies raster, but it is equivalent to the inlet number matrix in HPFA. The following

steps are repeated while the queue is not empty: 1) each process pops a cell from its own queue

and increments its �ow accumulation by 1, 2) the current cell's �ow accumulation is added to its

immediate downstream cell's value, 3) the dependency value of the downstream cell is decremented

by 1 and, if the updated dependency becomes 0, that cell is pushed to the queue. Once �ow

accumulation for the entire block is completed, a linear array called links is created along the

Cho: Preprint submitted to Elsevier Page 8 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

perimeter of the block. Each edge cell's value is set to either 1) its exit cell, 2) FlowTerminates,

or 3) FlowExternal, and this information is used later by the producer to o�set �ow accumulation

values from consumers' blocks. For more details, it is recommended to refer to Barnes (2017).

As can be seen, this algorithm requires at least two processes (P ≥ 2) because one is dedicated

to the producer. Each consumer uses a top-down approach using an auxiliary matrix called the

dependencies raster and the links array. PFA uses type uint8_t (1B) for the �ow direction

and dependency matrices, double (S = 8) for the �ow accumulation matrix, and uint16_t

(2B) for the links array. Here, the links array can be considered an overhead memory cost for

distributed computing, but it is still required for single-node computation. For this study, square

blocks in size b × b = N
P−1 are assumed for simpli�cation where P is the number of processes.

The total memory consumption by each consumer process is
[
(1 + 1 + S)b2 + 2(4b− 4)

]
B =[

(S + 2) N
P−1 + 8

(√
N

P−1 − 1
)]

B. Therefore, the minimum memory required by all P −1 consumer

processes is M(S,N, P ) =
[
(S + 2)N + 8

(√
N(P − 1)− P + 1

)]
B.

2.3. FastFlow

FastFlow (Zhou et al., 2019) is also a top-down method, but it is a serial algorithm. This

algorithm also uses linear arrays for 2-dimensional matrices, just like PFA, and has a time complexity

ofO(N) (Zhou et al., 2019). It starts with creating the output �ow accumulation matrix initialized to

1. It then computes the Number of Input Drainage Paths (NIDP) matrix, which is again equivalent

to the inlet number matrix from HPFA or the dependencies raster from PFA. All these equivalent

matrices will be referred to as the NIDP matrix hereafter.

For each cell in the �ow direction matrix, if it is null or its NIDP is not 0 (not a ridge cell),

move to the next cell. Otherwise, as long as its next cell's NIDP is 1 (the current cell is its only

uncomputed upstream cell) or 0 (a ridge cell, but a new ridge cell cannot be on the �ow path of

another ridge cell), the current cell's �ow accumulation is added to the next cell while there is one.

If the next cell's NIDP is greater than 1 (more than one uncomputed upstream cells), its NIDP is

decremented by 1, move to the next cell, and repeat this tracing-down loop.

This algorithm uses type unsigned char (1B) for the �ow direction and NIDP matrices, and

int (S = 4) for the �ow accumulation matrix. The minimum required memory is M(S,N) =

(2 · 1 + S)N B = (S + 2)N B.

Cho: Preprint submitted to Elsevier Page 9 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3. Methods and data

3.1. Considerations for shared-memory parallel computing

Since modern computers are based on the von Neumann architecture which separates computing

and storage components, they su�er from the von Neumann bottleneck (Zhao et al., 2022). The

von Neumann bottleneck occurs because of a limited throughput between the CPU and memory.

The speed of CPUs and the size of memory have signi�cantly increased recently compared to how

fast the system bus can transfer data between the two components (Zhao et al., 2022). Because

of this limited throughput, the CPU oftentimes becomes idle while waiting for data from memory

(Zhao et al., 2022). To mitigate this issue, CPUs provide a smaller but faster type of memory called

a CPU cache. CPU caches are much closer to the CPU than the main memory is and maintain

copies of memory segments in cache lines as needed (Drepper, 2007). Cache lines are temporarily

mapped to corresponding regions in the main memory in a block to reduce tra�c between the CPU

and memory (Lal et al., 2022). Cache lines maintain the �valid� and �dirty� states to manage data

synchronization with the main memory. Valid cache lines keep memory references and data in dirty

cache lines are written back to the memory.

In shared-memory parallel computing such as OpenMP, a performance issue can arise when

shared data is not aligned with cache line beginnings and its size is not a multiple of the cache

line size (Bolosky and Scott, 1993). Threads in parallel computing have their own view of shared

data in cache lines, and write to and read from that temporary view. Implicit or explicit �ush

operations synchronize data among all threads. When a thread accesses a portion of its data that is

not being updated by other threads, there is no need for expensive data synchronization. However,

if another thread updates independent data in the same cache line, the cache line becomes dirty

and the entire data in it is forced to be synchronized among all threads. For the �rst thread who

only needed unchanged data in that cache line, it is unnecessary data sharing because no data it

needs has changed. This unnecessary data sharing is called �false sharing� and it can signi�cantly

degrade computing performance (Bolosky and Scott, 1993).

Another issue can happen even without the programmer's knowledge when di�erent threads

have di�erent views of shared data at the moment they exchange it. When one thread writes data

to a shared variable, it can take multiple CPU instructions (non-atomic operations). If another

Cho: Preprint submitted to Elsevier Page 10 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

thread attempts to read this same variable concurrently, it can read the previous value of the

variable before the write operation starts updating the memory or even a torn value in the middle

of the write. This problematic phenomenon is a �data race.� False sharing only degrades computing

performance, but data races can corrupt shared data producing non-deterministic results. We can

reduce the chance of data races by avoiding concurrent read-write operations by multiple threads or

by explicitly synchronizing data among them. However, since data synchronization is known to be

computationally expensive (Deng et al., 2021), it is best to avoid concurrent read-write operations

or increase data locality.

3.2. Memory-e�cient �ow accumulation (MEFA)

To mitigate the impacts of the performance-degrading false sharing and memory-corrupting data

races, it is important to reduce the amount of shared data and increase data locality. Calculation

of the NIDP matrix is necessary for all the benchmark algorithms. In the proposed algorithm

named Memory-E�cient Flow Accumulation (MEFA), a need for the intermediate NIDP matrix

is completely eliminated to reduce data sharing. Algorithm 1 lists pseudocode for MEFA, and

Algorithms 2, 3, and 4 for the TraceDown, FindUp, and SumUp functions, respectively. The

TraceDown function uses tail recursion, but it is straightforward to translate it to an iterative

while loop if preferred. When this tail-recursive version is used, it is recommended to use tail-call

optimization (TCO) provided by the compiler to do the while-loop translation automatically and

avoid stack over�ows by a deep level of recursion. The GNU Compiler Collection provides the

-foptimize-sibling-calls option for TCO. If this optimization is not available, we can use the

while version of the function in Algorithm 5 and drop the last argument 1 from line 6 in Algorithm

1.

The only array created other than the required input �ow direction matrix (FDR) is the

�ow accumulation matrix (FAC) for output. The �ow direction matrix uses type unsigned char

(1B) and the �ow accumulation matrix uses type unsigned int (S = 4). The minimum memory

consumption measured in the number and byte size of matrix cells is M(S,N) = (S + 1)N B. As

can be seen in Table 1, MEFA has the smallest memory footprint. This proposed algorithm has a

time complexity of O(N).

Cho: Preprint submitted to Elsevier Page 11 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Require: FDR ▷ Flow direction matrix
1: global (m,n)← Numbers of rows and columns of FDR, respectively
2: FAC← New linear array in size mn initialized to 0 ▷ Flow accumulation matrix
3: parfor r ← 1 to m ▷ Parallel for loop
4: for c← 1 to n do

5: if FDRrc ̸= none and FindUp(FDR, r, c) = 0 then ▷ If a ridge cell is found
6: TraceDown(FDR, FAC, r, c, 1)
7: end if

8: end for

9: end parfor

Algorithm 1: Pseudocode for the proposed MEFA algorithm. FAC is the output �ow accumulation
matrix.

1: function TraceDown(FDR, FAC, r, c, a)
2: global (m,n)
3: FACrc ← a
4: if FDRrc = north-west then
5: (r, c)← (r − 1, c− 1)
6: else if FDRrc = north then

7: r ← r − 1
8: else if FDRrc = north-east then
9: (r, c)← (r − 1, c+ 1)
10: else if FDRrc = west then
11: c← c− 1
12: else if FDRrc = east then
13: c← c+ 1
14: else if FDRrc = south-west then
15: (r, c)← (r + 1, c− 1)
16: else if FDRrc = south then

17: r ← r + 1
18: else if FDRrc = south-east then
19: (r, c)← (r + 1, c+ 1)
20: end if

21: if r /∈ [1,m] or c /∈ [1, n] or FDRrc = none then return

22: u← FindUp(FDR, r, c)
23: a← SumUp(FAC, r, c, u)
24: if a = 0 then return ▷ If any upstream cells are not ready, stop
25: TraceDown(FDR, FAC, r, c, a+ 1) ▷ Tail recursion for tail-call optimization
26: end function

Algorithm 2: Pseudocode for the TraceDown function. Tail recursion can be converted to a while
loop manually as in Algorithm 5, but many compilers support tail-call optimization, which can
automatically optimize away tail recursion to a while loop to avoid stack over�ows by a deep level
of recursion.

The main nested for loop and the while-loop version of the TraceDown function in Algorithm

5 may look similar to the other top-down algorithms. However, there is a critical di�erence that

makes the proposed algorithm perform less write operations and hence faster, especially for parallel

computing where memory access is expensive. The other algorithms use the NIDP matrix to keep

Cho: Preprint submitted to Elsevier Page 12 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

track of how many upstream cells are ready to be accumulated to downstream. This task requires

write operations on an NIDP cell until it reaches its �nal value. For HPFA and PFA, the �nal

NIDP is 0, which means that there are now no upstream cells to be accumulated and the next

cell can be computed. For FastFlow, it is 1, which means that the current cell was the last cell

that needed to be accumulated for the next cell. Similarly, these algorithms have to write to a �ow

accumulation cell one or multiple times while decrementing NIDP values because they increment

each �ow accumulation cell by 1 every time they visit it.

1: function FindUp(FDR, r, c)
2: global (m,n)
3: u← 0
4: if r > 1 then

5: if c > 1 and FDRr−1,c−1 = south-east then u← u ∨̇ 32
6: if FDRr−1,c = south then u← u ∨̇ 64
7: if c < n and FDRr−1,c+1 = south-west then u← u ∨̇ 128
8: end if

9: if c > 1 and FDRr,c−1 = east then u← u ∨̇ 16
10: if c < n and FDRr,c+1 = west then u← u ∨̇ 1
11: if r < m then

12: if c > 1 and FDRr+1,c−1 = north-east then u← u ∨̇ 8
13: if FDRr+1,c = north then u← u ∨̇ 4
14: if c < n and FDRr+1,c+1 = north-west then u← u ∨̇ 2
15: end if

16: return u
17: end function

Algorithm 3: Pseudocode for the FindUp function. ∨̇ is the bitwise OR operator.

We can in fact calculate the number and bytes of write operations required by each algorithm.

Let's ignore any write operations for matrix initialization and auxiliary variables other than the

major NIDP and �ow accumulation matrices. In HPFA, ridge cells in the NIDP matrix will be

�agged as completed once (the number of ridge cells Nr and the number of non-null contributing

cells Nc). Non-ridge cells will sequentially be decreased to 0 (Nc) and �nally �agged as completed

(Nc −Nr). Since HPFA uses 0 for ridge cells in the �ow accumulation matrix, only non-ridge cells

will be updated Nc times in total including any cells outside the �ow direction matrix. That is the

total number of 3Nc write operations and 6Nc B of memory writing including 2Nc times for 1-byte

NIDP and Nc for 4-byte �ow accumulation.

In FastFlow, ridge cells in the NIDP matrix will not be updated and non-ridge cells with more

than one upstream cell will sequentially be reduced to 1. The sum of NIDP is Nc − Nd where Nd

Cho: Preprint submitted to Elsevier Page 13 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

is the number of cells draining out of the �ow direction matrix. The �nal value of a non-edge cell

in the NIDP matrix is 1, so the number of 1s in the �nal NIDP matrix is Nc −Nr. Therefore, the

total number of write operations on the NIDP matrix will be the sum of NIDP less the number of

non-ridge cells, which is Nr − Nd. Even though FastFlow starts with 1s in the �ow accumulation

matrix, it still writes 1 again at ridge cells (Nr). However, unlike HPFA, it does not accumulate

into outside cells (Nc − Nd), so the total number of write operations on the �ow accumulation

matrix is Nc + Nr − Nd, resulting in the combined number of Nc + 2(Nr − Nd) times. That is

[4Nc + 5(Nr −Nd)]B including Nr −Nd times for 1-byte NIDP and Nc +Nr −Nd times for 4-byte

�ow accumulation. These numbers are smaller than those by HPFA, but they vary with the input

topography (Nr and Nd) and thus are not deterministic.

MEFA is di�erent from the benchmark algorithms in that it waits until the �nal accumulation

value of a cell can be computed and written just once. Not only that, it does not require any

auxiliary matrices like NIDP for information tracking, saving a signi�cant amount of memory and

write operations. The proposed algorithm uses a �look-around� approach to avoid unnecessary NIDP

tracking and multiple write operations on a �ow accumulation cell. Just like the other algorithms,

it looks ahead to the next cell. However, it also looks behind it and checks the upstream cells of

the next cell using the FindUp function in Algorithm 3. If any of those upstream cells are not

ready (a cell value 0), the next cell is never written to. This same cell will be visited again by other

ridge cells until all its upstream cells are ready (a cell value greater than 0). Once they are ready,

the cell adds the sum of their values (the SumUp function in Algorithm 4) plus 1 (itself) to itself,

and looks ahead and behind from the next cell. This look-around approach without intermediate

matrices allows a signi�cantly reduced amount of expensive memory writes. Again, ignoring the

initialization step, the number of write operations is Nc on the �ow accumulation matrix and the

total memory writing is 4Nc B. Compared to HPFA and FastFlow, respectively, it is a factor of 3

and 1 + 2(Nr −Nd)/Nc times less number of writes and a factor of 3/2 and 1 + 1.25(Nr −Nd)/Nc

times less bytes of memory writing. Table 2 summarizes these functions of write operations.

Figure 1 shows how cell visits work in MEFA. In Figure 1a, only one look-around is necessary

because the �rst check 1 �nds an unvisited cell. When the north cell is visited in Figure 1b, the

previously visited north-west cell is considered for �ow accumulation, but the next check 3 fails

Cho: Preprint submitted to Elsevier Page 14 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table 2

Minimum number and size in bytes of write operations. Wn(Nc, Nr, Nd): Minimum number of write operations,
Wb(S,Nc, Nr, Nd): Minimum size in bytes of write operations, S: Size of the �ow accumulation data type, Nc:
Number of non-null contributing cells, Nr: Number of ridge cells, Nd: Number of cells draining out of the �ow
direction matrix.

Algorithm Wn(Nc, Nr, Nd) Wb(S,Nc, Nr, Nd)

HPFA 3Nc (S + 2)Nc

FastFlow Nc + 2(Nr −Nd) SNc + (S + 1)(Nr −Nd)
MEFA Nc SNc

with a new unvisited cell. Finally, in Figure 1c, the north-east cell can accumulate both previously

visited cell values to the center cell. During this process, MEFA does not need to read from or

update any intermediate output matrix. To calculate the �ow accumulation matrix of Figure 1,

MEFA requires 9 writes while HPFA and FastFlow require 27 and 15, respectively, because N = 9,

Nr = 5, and Nd = 2. These numbers were con�rmed by counting write operations in the source

code.

1

(a) North-west cell visit.

2 3

(b) North cell visit.

4 5

(c) North-east cell visit.

Figure 1: How cell visits work in MEFA. Blue and black arrows show �ow directions and look-ahead-and-behind
(look-around) checks, respectively. Circled numbers indicate the order of look-around checks. White, red, and
gray cells mean unvisited, current, and already visited cells, respectively.

Since HPFA is a top-down algorithm that uses OpenMP for parallelism, it has the closest

design and structure to the intended implementation of MEFA. To see the impacts of the

proposed look-around approach and elimination of the NIDP matrix, the source code of HPFA

was modi�ed to implement Algorithm 1 using the TraceDown function in Algorithm 5. This

MEFA implementation derived from HPFA is called �MEFA-HP.�

3.3. Performance experiments

Table 3 shows system speci�cations for the performance experiments. Three experiments were

carried out:

Cho: Preprint submitted to Elsevier Page 15 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table 3

System speci�cations for the performance experiments. ∗: For MEFA vs. HPFA and FastFlow with the unsigned
int (MEFA and HPFA) and int (FastFlow) types (S = 4), †: For MEFA-F64 vs. PFA with the double type
(S = 8).

Item Description

CPU Intel® Core� i9-12900 @ 2.40GHz
Cores 16
Logical processors 24
Memory 64GB
System architecture 64-bit x86_64
Operating system Windows 11
Compiler∗ MinGW-w64 GNU Compiler Collection (GCC) version 12.2.0
Compiler† Microsoft® C/C++ Optimizing Compiler (MSVC) version 19.34.31937 for x64
GeoTIFF library Geospatial Data Abstraction Library (GDAL) version 3.6.1 C API from OSGeo4W

1. Best MEFA implementation: This experiment helped choose one best implementation of the

new algorithm. Since it is more about OpenMP con�gurations (three OpenMP, one memory,

and one tail recursion components) and is the least relevant to the algorithm itself with the

exception of the less-memory alternatives, its methods, results, and discussion are presented

in Appendix A. The �nal suggested version of MEFA is MEFA (dnfmt). Its schematic shown

in Figure 2 summarizes what each of these experimental components means. For more details,

refer to Appendix A.

2. MEFA-HP vs. HPFA: This experiment was important because only minimum changes were

made to the existing source code of HPFA to implement the proposed algorithm to show the

impacts of the reduced memory consumption and the look-around approach.

3. MEFA vs. the benchmark algorithms: This experiment compared the performances of MEFA

and the other algorithms.

Performance di�erences were measured by the relative change in percent for each number of

threads or processes given by

Tslower − Tfaster
Tslower

× 100% (1)

where T is either the compute or run time in seconds, and the subscripts indicate slower or faster

algorithms.

Cho: Preprint submitted to Elsevier Page 16 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

UP

Flow Accumulation

Thread 0

Thread 1

Thread 2

Thread 3

d

n

f

m

t

Figure 2: Schematic of MEFA (dnfmt). d : Dynamic schedule assigning iterations to threads one at a time,
n : Non-collapsed nested row-column loops allowing row-by-row assignments, f : Flush operations explicitly
synchronizing shared memory when needed, m : More-memory allocated to store the write-once read-only UP

matrix for performance, t : Tail recursion used for the naturally recursive trace-down problem. Cell depending
on information from threads 0 and 3. Intermediate write-once read-only matrix, Processed cells, Assigned
row and active column-wise iteration in thread 0, Same in thread 1, Same in thread 2, Same in thread
3.

3.3.1. Compilation

MEFA, MEFA-HP, HPFA, and FastFlow were compiled using the C (MEFA) and C++ (MEFA-

HP, HPFA, and FastFlow) compilers included in the GNU Compiler Collection (GCC). The same

compile-time optimization option -O3 was used. Since PFA is written using the GDAL C++ API,

it is not possible to compile it with GCC because the GDAL library from OSGeo4W was compiled

using the Microsoft® C/C++ Optimizing Compiler (often referred to as Microsoft Visual C++

Compiler or MSVC) with a di�erent name mangling scheme from GCC. For this reason, PFA

was compiled with MSVC with the /O2 option for maximum speed. PFA uses a wider data type

(double with S = 8) for �ow accumulation cells than those of the other algorithms (unsigned int

or int with S = 4). To make fair comparisons between MEFA and PFA, MEFA's double version

(MEFA-F64) was implemented and compiled with MSVC with the same optimization option.

Cho: Preprint submitted to Elsevier Page 17 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3.3.2. Time pro�ling

The identical time-pro�ling code was used in MEFA, MEFA-HP, MEFA-F64, HPFA, and

FastFlow. This code can measure the elapsed time between two lines in source code in ms. We are

mainly concerned about pure computing time by an algorithm (compute times) without any data

input and output (I/O) between the memory and disk storage. PFA uses its own time-measuring

code to report compute times. Total wall-clock times (run times) were measured including data I/O

(reading an input �ow direction �le and writing an output �ow accumulation �le) before and after

each algorithm run. The built-in �time� command in the Bash shell was used to measure run times

reported as �real.� PFA reports the producer, �rst-, and second-stage total consumer calculation

times (tp, t1, and t2, respectively). Its total compute time was calculated by adding the producer

calculation time and the average of the latter two (i.e., tp +
t1+t2
P−1 ).

FastFlow was repeated 30 times and, similarly, all the parallel algorithms except PFA were

repeated the same number of times per number of threads 1�24, totaling 720 runs. For PFA, for

each number of processes 2�24, �ve square block sizes from 4000 to 20,000 every 4000 were repeated

30 times with a total of 3450 runs. The average compute time per number of threads or processes

was used for comparisons.

3.3.3. Analysis of strong scaling

Since the problem size is constant for this study, strong scaling was analyzed using the speedup

function

ψ(P ) =
T (Pmin)

T (P )
(2)

and the e�ciency function

ϵ(P ) =
ψ(P )

P − P∗
(3)

where P is the number of threads or processes for OpenMP or MPI algorithms, respectively, Pmin

is 2 for PFA and 1 for the other algorithms, T (Pmin) and T (P ) are the compute or run times using

Pmin and P threads or processes, respectively, and P∗ is 1 for PFA and 0 for the other algorithms.

Cho: Preprint submitted to Elsevier Page 18 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3.3.4. Input �ow direction �les

The Geographic Resources Analysis Support System (GRASS) GIS (Neteler et al., 2012) was

used to process GIS data. The 1′′ National Elevation Dataset (NED) (U.S. Geological Survey, 2020)

for the entire state of Texas was reprojected to the European Petroleum Survey Group (EPSG)

5070 Coordinate Reference System (CRS), which is commonly known as the Albers Equal Area

projection. This CRS covers the conterminous United States. The reprojected resolution of the

data was set to 30m, which is the closest integer approximation of the native 1′′ resolution. The

total number of cells including null is 1,825,884,762 and the number of non-null cells is 772,957,282

(42%).

The r.watershed module in GRASS was used to create a Single Flow Direction (SFD) drainage

raster, which was converted to the ArcGIS and PFA �ow direction formats using the r.mapcalc

module. The GRASS drainage raster encodes �ow directions starting with 1 from north-east up to

8 for east sequentially in the counter-clockwise direction. All the algorithms except PFA accept the

ArcGIS �ow direction format, which uses powers of 2 starting with 20 from east up to 27 for north-

east in the clockwise direction. PFA starts with 1 from west up to 8 for south-west sequentially in

the clockwise direction. Two input �ow direction �les were created in these encodings by exporting

GRASS rasters to GeoTIFF �les. Figure 3 shows the �ow direction raster. About 45% of the cells

drain towards east, south-east, and south to the Texas coastal line.

4. Results and discussion

4.1. MEFA-HP vs. HPFA: Impacts of the proposed approach on HPFA

Figures 4a and 4b show the trends and distributions of the compute and run times, respectively,

of MEFA-HP and HPFA as the number of threads increases. The performance gap between the two

algorithms grows with more threads especially in compute time. As shown in Figure 4c, MEFA-

HP increasingly improved its compute-time performance over HPFA with an increasing number

of threads. Similarly, Figure 4d shows that its run-time performance was also better than that of

HPFA (positive performance improvement), but the rate of performance improvement decreased

with the number of threads (a negative regression slope).

Cho: Preprint submitted to Elsevier Page 19 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

400000

600000

800000

1000000

1200000

1400000

N
o
rt

h
in

g
 (

m
)

−1000000 −800000 −600000 −400000 −200000 0 200000

Easting (m)

Projection: NAD83 / Conus Albers (EPSG:5070)

E
SE
S
SW
W
NW
N
NE

Figure 3: Input �ow direction raster.

The modi�cation of HPFA (MEFA-HP) improved the compute performance of its original

algorithm by 28.92% by reducing shared-memory reads and writes without storing the NIDP matrix,

and implementing the proposed look-around approach with minimum changes to the source code.

This result shows how reduced memory usage can improve the overall performance of an algorithm

in parallel computing environments.

4.2. Output validation

When we evaluate algorithms, not only is it important to compare computational performance,

but also more important to validate their outputs because faster algorithms that produce incorrect

outcomes are not very useful.

Boundary check The �rst check was to see if an algorithm created any extra data outside the

non-null region of the input �ow direction matrix. Since HPFA and its derivative MEFA-HP do

not nullify cells outside the �ow direction boundary, those cells were ignored. HPFA does not check

the nullity of a cell when it accumulates its upstream cell values to it and, as a result, it allows

edge cells to �ow down one more cell if their directions are towards the exterior of the boundary. It

has added 47,928 extra cells along the boundary. All the other algorithms have conformed to the

boundary of the �ow direction matrix without any extra cells outside it.

Cho: Preprint submitted to Elsevier Page 20 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3

10

30

1 3 6 9 12 15 18 21 24
Number of threads

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(a) Compute time violin plots.

10

20

30

1 3 6 9 12 15 18 21 24
Number of threads

R
un

 ti
m

e 
(s

ec
on

ds
)

(b) Run time violin plots.

Adjusted R2 = 0.495Adjusted R2 = 0.495Adjusted R2 = 0.495

25

27

29

31

0 5 10 15 20 25
Number of threads

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

(c) Compute time improvement.

Adjusted R2 = 0.506Adjusted R2 = 0.506Adjusted R2 = 0.506

11

13

15

17

19

0 5 10 15 20 25
Number of threads

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

(d) Run time improvement.

Figure 4: Performance comparisons of the compute and run times of MEFA-HP and HPFA. On average, the
compute and run times were improved by 28.92% and 15.36%, respectively. (a) and (b): MEFA-HP, HPFA.

Flow accumulation values The �ow accumulation values from MEFA, MEFA-HP, and FastFlow

were identical. As expected, at each cell, their values from HPFA were one less than those from the

other algorithms as HPFA assigns 0 to ridge cells. The values of the 47,928 extra cells from HPFA

Cho: Preprint submitted to Elsevier Page 21 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

were veri�ed to be correct. Other than the o�set di�erence by 1 and extra cells from HPFA, all the

algorithms have produced the same �ow accumulation matrix.

4.3. Speedup and e�ciency

Figure 5 shows the results of the scaling analysis. For PFA, a speedup of 1 and an e�ciency of

1 were achieved with two processes because only consumers perform an actual �ow accumulation

subtask per tile. For this reason, we cannot directly compare these two quantities of PFA with those

of the others for the same number of threads. Instead, we are more interested in the overall shapes

of the curves. The closer a speedup curve is to the ideal speedup line, the better its algorithm

scales. PFA scaled the best in compute time, followed by MEFA (dnfmt), closely by MEFA-F64,

and �nally by HPFA as shown in Figure 5a. Although the compute-time e�ciency curves of all the

algorithms showed distinctive patterns in Figure 5b, the run-time e�ciency curves were similar in

shape in Figure 5d. The same was observed in Figures 5a and 5c.

4.4. Performance comparisons

Timeout cases with PFA PFA was tested with �ve square block sizes from 4000 to 20,000 every

4000. The �rst four block sizes except 20,000 successfully produced output tiles within 60 s, but

the block size of 20,000 timed out at 60 s. Additional tests with block sizes of 17,000 to 19,000

every 1000 were also unsuccessful. No further investigation was conducted to see what caused this

unexpected timeout or poor performance beyond the block size of 16,000. In this section, these

timed-out results were not included, but this observation should be considered when choosing a

block size for PFA.

Average performance Table 4 and Figure 6 present the benchmark results of all the algorithms.

For single-threaded runs with S = 4 (unsigned int and int types for �ow accumulation), MEFA

(dnfmt) performed the best, followed by HPFA, and FastFlow in terms of both compute and run

times. For multi-threaded runs with S = 4 and 24 threads, MEFA (dnfmt) was better than HPFA.

Similarly, in all the cases with S = 8 (double type for �ow accumulation), MEFA-F64 (dnfmt-

double) was faster than PFA. On average across 24 di�erent numbers of threads (or processes for

PFA), MEFA outperformed its fastest benchmark algorithm by 45.38% and 19.38% with the integer

and double-precision �oating-point output data types, respectively, in compute time. The suggested

Cho: Preprint submitted to Elsevier Page 22 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

0

5

10

15

20

25

1 3 6 9 12 15 18 21 24
Number of threads*

S
pe

ed
up

(a) Mean compute time speedup.

0.2

0.4

0.6

0.8

1.0

1 3 6 9 12 15 18 21 24
Number of threads*

E
ffi

ci
en

cy
(b) Mean compute time e�ciency.

0

5

10

15

20

25

1 3 6 9 12 15 18 21 24
Number of threads*

S
pe

ed
up

(c) Mean run time speedup.

0.25

0.50

0.75

1.00

1 3 6 9 12 15 18 21 24
Number of threads*

E
ffi

ci
en

cy

(d) Mean run time e�ciency.

Figure 5: Mean compute and run time speedup ψ(P ) and e�ciency ϵ(P ). ∗: Number of processes for PFA.
Ideal speedup, MEFA (dnfmt), HPFA, MEFA-F64 (dnfmt-double), PFA (double).

MEFA (dnfmt) and even the worst MEFA (dnalw) consistently outperformed the other non-MEFA

benchmark algorithms. Compared with the fastest multi-threaded algorithm HPFA, MEFA (dnfmt)

was 45.30% faster on average in terms of compute time.

Cho: Preprint submitted to Elsevier Page 23 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table 4

Mean compute and run times of the algorithms. S: Size in bytes of the data type for �ow accumulation (4
for unsigned int or int, and 8 for double), ∗: Serial algorithm, †: Processes for PFA, ‡: One less consumer
processes with a dedicated process for the producer for PFA.

S Algorithm Threads† Compute time (s) Run time (s) Rank

4 MEFA (dnfmt) 1 16.19 23.03 1
HPFA 1 21.40 29.58 2
FastFlow∗ 1 22.31 31.17 3

MEFA (dnfmt) 24 1.46 8.45 1
HPFA 24 3.76 11.88 2

MEFA (dnfmt) 1�24 3.14 9.89 1
HPFA 1�24 5.74 13.93 2

8 MEFA-F64 1 22.95 35.00 1
PFA 2‡ 29.24 49.86 2

MEFA-F64 24 2.15 14.26 1
PFA 24‡ 2.23 16.05 2

MEFA-F64 1�24 4.53 16.51 1
PFA 2�24‡ 5.62 19.36 2

Performance trends with increasing threads Figure 6a shows the distributions of the compute time

by number of threads or processes. MEFA (dnfmt) consistently outperformed HPFA over all the

numbers of threads. With the double data type, MEFA-F64 was also faster than PFA, but the

latter exhibited a wider distribution starting around 15 processes and its mean compute time

quickly converged to that of MEFA-F64 as the number of processes grows as shown in Figure 6b.

However, this performance gain of PFA with an increasing number of processes was not obvious

in case of the mean run time in Figure 6c. As can be seen in Figure 6d, compared to the other

algorithms, PFA showed a relatively dynamic I/O performance trend with di�erent numbers of

processes. Initially, it improved quickly until eight processes, after which it started deteriorating

slowly. The rather �at run-time performance of PFA with more than 10 processes in Figure 6c can

be explained by this negating e�ect of the improving-then-deteriorating I/O performance combined

with the fast improving compute time.

4.5. Memory e�ciency of MEFA

The numbers of write operations on the intermediate and �ow accumulation matrices by MEFA,

HPFA, and FastFlow were counted programmatically in single-threaded runs. These counts agreed

with theoretically calculated numbers of write operations using the functions in Table 2. Table

Cho: Preprint submitted to Elsevier Page 24 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3

10

30

1 3 6 9 12 15 18 21 24
Number of threads*

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(a) Compute time violin plots.

3

10

30

1 3 6 9 12 15 18 21 24
Number of threads*

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(b) Mean compute times.

10

30

50

1 3 6 9 12 15 18 21 24
Number of threads*

R
un

 ti
m

e 
(s

ec
on

ds
)

(c) Mean run times.

7

10

20

1 3 6 9 12 15 18 21 24
Number of threads*

I/O
 ti

m
e 

(s
ec

on
ds

)

(d) Mean I/O times.

Figure 6: Compute, run, and I/O time plots of MEFA (dnfmt) and the other algorithms. ∗: Number of processes
for PFA. MEFA (dnfmt), HPFA, FastFlow, MEFA-F64 (dnfmt-double), PFA (double).

5 compares the minimum memory required by each algorithm. PFA was not tested because it is

designed for distributed-memory multi-node computing. MEFA used 17% less memory than HPFA

and FastFlow, and wrote 33% and 25% less bytes than HPFA and FastFlow, respectively.

Cho: Preprint submitted to Elsevier Page 25 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table 5

Minimum memory required, number and size in bytes of write operations for the study area. S = 4, N =
1,825,884,762, Nc = 772,957,282, Nr = 203,659,828, Nd = 60,993.

Algorithm M(S,N) (GB) Wn(Nc, Nr, Nd) Wb(S,Nc, Nr, Nd) (GB)

MEFA 9.13 772,957,282 3.09
HPFA 10.96 2,318,871,846 4.64
FastFlow 10.96 1,180,154,952 4.11

We can back-calculate a new data size that is too large for an algorithm, but can �t into the

memory by switching to MEFA (dn�t) for maximum data size. For example, on a computer with

32GB memory, let's assume that 2GB is used for other programs. When using HPFA, we can solve

equation M(S = 4, N) = (S + 2)
[
N + 4

√
N + 4

]
+ 24

√
N = 30GB for N = 4,999,434,342. With

the same memory, we can use larger data with N = 6,000,000,000. The new maximum data size

is about 1.2 times larger than the old size. In fact, 1.2 is the asymptotic limit of the data growth.

Dividing the memory cost function of HPFA by that of MEFA, and taking the limit of N , we can

obtain

lim
N→+∞

(S + 2)
[
N + 4

√
N + 4

]
+ 24
√
N

(S + 1)N

= lim
N→+∞

S + 2

S + 1

[
1 +

4√
N

+
4

N

]
+

24

S + 1

1√
N

=
S + 2

S + 1
.

(4)

For S = 4, this ratio of the maximum available memory to the memory required by MEFA (dn�t)

is 1.2 as the data size becomes larger. In other words, we can �t approaximately 20% more data

when using MEFA (dn�t).

Memory e�ciency in MEFA was achieved in two ways: 1) by reducing allocated memory and

calculating the UP matrix on the �y for accommodating larger data in the same amount of memory

or 2) by still storing the UP matrix, but making it write-once read-only for reduced expensive write

operations.

5. Conclusions

This study introduced the Memory-E�cient Flow Accumulation (MEFA) algorithm and its

OpenMP implementation. The e�ciency of the proposed methods was con�rmed by modifying the

Cho: Preprint submitted to Elsevier Page 26 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

fastest benchmark algorithm HPFA. Di�erent implementations of the new algorithm were tested

for various combinations of OpenMP constructs to suggest the most e�cient variant. Storing

intermediate results in the suggested MEFA implementation was faster, but the performance

variability among the eight tested versions was 5%. The proposed MEFA algorithm was further

benchmarked against one single-threaded (FastFlow), one OpenMP (HPFA) and one MPI (PFA)

algorithms. The memory requirements of these algorithms were analyzed in terms of the number

and byte size of major matrix cells. It was shown that MEFA can be implemented without requiring

any additional memory other than both required input and output matrices. Finally, on average,

the new algorithm was 45% and 19% faster than its OpenMP and MPI benchmark algorithms,

respectively, in compute time using less memory.

References

Barnes, R., 2017. Parallel non-divergent �ow accumulation for trillion cell digital elevation models on desktops or

clusters. Environmental Modelling & Software 92, 202�212. URL: https://www.sciencedirect.com/science/article/

pii/S1364815216304984, doi:doi:10.1016/j.envsoft.2017.02.022.

Bolosky, W.J., Scott, M.L., 1993. False sharing and its e�ect on shared memory performance, in: Proceedings of the

USENIX SEDMS IV Conference (Experiences with Distributed and Multiprocessor Systems), San Diego, California. URL:

https://www.usenix.org/legacy/publications/library/proceedings/sedms4/full_papers/bolosky.txt.

Chen, Z., Yang, B., Ma, A., Peng, M., Li, H., Chen, T., Chen, C., Dong, Z., 2022. Joint alignment of the distribution in input and

feature space for cross-domain aerial image semantic segmentation. International Journal of Applied Earth Observation and

Geoinformation 115, 103107. URL: https://www.sciencedirect.com/science/article/pii/S1569843222002953, doi:doi:

10.1016/j.jag.2022.103107.

Choi, Y., 2012. A new algorithm to calculate weighted �ow-accumulation from a DEM by considering surface and underground

stormwater infrastructure. Environmental Modelling & Software 30, 81�91. doi:doi:10.1016/j.envsoft.2011.10.013.

Dagum, L., Menon, R., 1998. OpenMP: An industry standard API for shared-memory programming. Computational Science

& Engineering, IEEE 5, 46�55.

de Jong, K., Panja, D., Karssenberg, D., van Kreveld, M., 2022. Scalability and composability of �ow accumulation algorithms

based on asynchronous many-tasks. Computers & Geosciences 162, 105083. URL: https://www.sciencedirect.com/

science/article/pii/S0098300422000462, doi:doi:doi:10.1016/j.cageo.2022.105083.

Deng, Z., Li, J., Lin, J., 2021. A synchronization optimization technique for OpenMP, in: 2021 IEEE 13th International

Conference on Computer Research and Development (ICCRD), pp. 95�103. doi:doi:10.1109/ICCRD51685.2021.9386475.

Do, H.T., Limet, S., Melin, E., 2011. Parallel computing �ow accumulation in large digital elevation models. Procedia Computer

Science 4, 2277�2286. URL: https://www.sciencedirect.com/science/article/pii/S1877050911003061, doi:doi:10.1016/

j.procs.2011.04.248. proceedings of the International Conference on Computational Science, ICCS 2011.

Drepper, U., 2007. What every programmer should know about memory. https://www.akkadia.org/drepper/cpumemory.pdf.

URL: https://www.akkadia.org/drepper/cpumemory.pdf.

Cho: Preprint submitted to Elsevier Page 27 of 36

https://www.sciencedirect.com/science/article/pii/S1364815216304984
https://www.sciencedirect.com/science/article/pii/S1364815216304984
https://doi.org/10.1016/j.envsoft.2017.02.022
https://www.usenix.org/legacy/publications/library/proceedings/sedms4/full_papers/bolosky.txt
https://www.sciencedirect.com/science/article/pii/S1569843222002953
https://doi.org/10.1016/j.jag.2022.103107
https://doi.org/10.1016/j.jag.2022.103107
https://doi.org/10.1016/j.envsoft.2011.10.013
https://www.sciencedirect.com/science/article/pii/S0098300422000462
https://www.sciencedirect.com/science/article/pii/S0098300422000462
https://doi.org/doi:10.1016/j.cageo.2022.105083
https://doi.org/10.1109/ICCRD51685.2021.9386475
https://www.sciencedirect.com/science/article/pii/S1877050911003061
https://doi.org/10.1016/j.procs.2011.04.248
https://doi.org/10.1016/j.procs.2011.04.248
https://www.akkadia.org/drepper/cpumemory.pdf
https://www.akkadia.org/drepper/cpumemory.pdf


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Jiang, L., Tang, G., Liu, X., Song, X.D., Yang, J., Liu, K., 2013. Parallel contributing area calculation with granularity control

on massive grid terrain datasets. Computers & Geosciences 60, 70�80. doi:doi:10.1016/j.cageo.2013.07.003.

Kotyra, B., Chabudzi«ski, L., Stpiczy«ski, P., 2021. High-performance parallel implementations of �ow accumulation algorithms

for multicore architectures. Computers & Geosciences 151, 104741. URL: https://www.sciencedirect.com/science/

article/pii/S0098300421000492, doi:doi:10.1016/j.cageo.2021.104741.

Lal, S., Varma, B.S., Juurlink, B., 2022. A quantitative study of locality in GPU caches for memory-divergent workloads.

International Journal of Parallel Programming 50, 189�216. doi:doi:10.1007/s10766-022-00729-2.

Message Passing Interface Forum, 2021. MPI: A Message-Passing Interface Standard Version 4.0. URL: https://www.

mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.

Neteler, M., Bowman, H.M., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose open source GIS. Environmental

Modelling & Software 31, 124�130. doi:doi:10.1016/j.envsoft.2011.11.014.

Ortega, L., Rueda, A., 2010. Parallel drainage network computation on CUDA. Computers & Geosciences 36, 171�178. URL:

https://www.sciencedirect.com/science/article/pii/S0098300409002970, doi:doi:10.1016/j.cageo.2009.07.005.

Qin, C.Z., Zhan, L., 2012. Parallelizing �ow-accumulation calculations on graphics processing units�From iterative DEM

preprocessing algorithm to recursive multiple-�ow-direction algorithm. Computers & Geosciences 43, 7�16. URL:

https://www.sciencedirect.com/science/article/pii/S0098300412000787, doi:doi:10.1016/j.cageo.2012.02.022.

Rueda, A.J., Noguera, J.M., Luque, A., 2016. A comparison of native GPU computing versus OpenACC for implementing �ow-

routing algorithms in hydrological applications. Computers & Geosciences 87, 91�100. URL: https://www.sciencedirect.

com/science/article/pii/S0098300415300959, doi:doi:10.1016/j.cageo.2015.12.004.

Sten, J., Lilja, H., Hyväluoma, J., Westerholm, J., Aspnäs, M., 2016. Parallel �ow accumulation algorithms for graphical

processing units with application to RUSLE model. Computers & Geosciences 89, 88�95. URL: https://www.sciencedirect.

com/science/article/pii/S0098300416300061, doi:doi:10.1016/j.cageo.2016.01.006.

Su, C., Yu, W., Feng, C., Yu, C., Huang, Z., Zhang, X., 2015. An e�cient algorithm for calculating drainage accumulation

in digital elevation models based on the basin tree index. IEEE Geoscience and Remote Sensing Letters 12, 424�428.

doi:doi:10.1109/LGRS.2014.2345561.

Sun, Y., Zhang, X., Xin, Q., Huang, J., 2018. Developing a multi-�lter convolutional neural network for semantic segmentation

using high-resolution aerial imagery and LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing 143,

3�14. URL: https://www.sciencedirect.com/science/article/pii/S0924271618301680, doi:doi:10.1016/j.isprsjprs.

2018.06.005. iSPRS Journal of Photogrammetry and Remote Sensing Theme Issue �Point Cloud Processing�.

U.S. Geological Survey, 2020. USGS One arc-second National Elevation Dataset (NED). ftp://rockyftp.cr.usgs.gov/

vdelivery/Datasets/Staged/NED/1/IMG. Accessed in May 2020.

Wallis, C., Watson, D., Tarboton, D., Wallace, R., 2009. Parallel �ow-direction and contributing area calculation for hydrology

analysis in digital elevation models, in: Proceedings of the International Conference on Parallel and Distributed Processing

Techniques and Applications, pp. 467�472.

Wang, Y., Liu, Y., Xie, H., Xiang, Z., 2011. A quick algorithm of counting �ow accumulation matrix for deriving drainage

networks from a DEM, in: Zhang, T. (Ed.), Third International Conference on Digital Image Processing, ICDIP 2011,

Chengdu, China, April 15-17, 2011, SPIE. p. 800929. doi:doi:10.1117/12.896274.

Zhao, Y., Lin, Z., Wu, X., Zhao, Q., Lu, W., Peng, C., Tong, Z., Chen, J., 2022. Con�gurable memory with a multilevel shared

structure enabling in-memory computing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 30, 566�578.

Cho: Preprint submitted to Elsevier Page 28 of 36

https://doi.org/10.1016/j.cageo.2013.07.003
https://www.sciencedirect.com/science/article/pii/S0098300421000492
https://www.sciencedirect.com/science/article/pii/S0098300421000492
https://doi.org/10.1016/j.cageo.2021.104741
https://doi.org/10.1007/s10766-022-00729-2
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://doi.org/10.1016/j.envsoft.2011.11.014
https://www.sciencedirect.com/science/article/pii/S0098300409002970
https://doi.org/10.1016/j.cageo.2009.07.005
https://www.sciencedirect.com/science/article/pii/S0098300412000787
https://doi.org/10.1016/j.cageo.2012.02.022
https://www.sciencedirect.com/science/article/pii/S0098300415300959
https://www.sciencedirect.com/science/article/pii/S0098300415300959
https://doi.org/10.1016/j.cageo.2015.12.004
https://www.sciencedirect.com/science/article/pii/S0098300416300061
https://www.sciencedirect.com/science/article/pii/S0098300416300061
https://doi.org/10.1016/j.cageo.2016.01.006
https://doi.org/10.1109/LGRS.2014.2345561
https://www.sciencedirect.com/science/article/pii/S0924271618301680
https://doi.org/10.1016/j.isprsjprs.2018.06.005
https://doi.org/10.1016/j.isprsjprs.2018.06.005
ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG
ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG
https://doi.org/10.1117/12.896274


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table A1

Possible variations of di�erent components of MEFA. Underlined letters are combined to represent a MEFA
version. For example, �dn�t� uses dynamic schedules with no nested loop collapsing; it explicitly flushes shared
data, and uses Algorithms 3 and 2. ∗: Line 3 in Algorithm 4. †: Algorithm 3. ‡: Algorithm 2. §: Algorithm 5.

Schedule collapse Data synchronization Memory TraceDown

static not collapsed flush∗ more with NIDP tail recursion‡

dynamic collapsed atomic less without NIDP† while§

guided

doi:doi:10.1109/TVLSI.2022.3148327.

Zhou, G., Wei, H., Fu, S., 2019. A fast and simple algorithm for calculating �ow accumulation matrices from raster digital

elevation. Frontiers of Earth Science 13, 317�326. doi:doi:10.1007/s11707-018-0725-9.

A. Best MEFA implementation

Multiple versions of MEFA were implemented in C to see how di�erent components in MEFA

a�ect its performance. This Appendix explains these alternative versions in detail, presents their

results, and discusses how one best implementation of MEFA was selected for the benchmark

experiment.

A.1. Methods

Table A1 summarizes all variations of di�erent components in MEFA implementations. The total

number of combinations is 48, but not all of them were tested because many with weak performance

were abandoned earlier.

OpenMP supports three kinds of scheduling for distributing tasks among threads: 1) static,

2) dynamic, and 3) guided. Static schedules divide iterations in a loop into chunks by the number

of threads and assigns the chunks to the threads statically. If some tasks take a shorter time to

complete and others a longer time (irregular tasks), the threads who �nished earlier can become

idle while waiting for other longer threads to �nish. To avoid this problem, dynamic schedules can

help load-balance irregular tasks by assigning chunks to threads dynamically. Guided schedules start

with a bigger chunk size (close to static) and decrease its size dynamically to handle load imbalance.

However, both dynamic and guided schedules incur scheduling overheads. In this study, all these

schedule types with their default chunk size were tested to determine the best one. The default

chunk sizes are cs =
⌈

rows
threads

⌉
for static, cd = 1 for dynamic, and

⌈
rows

threads

⌉
(chunk size for static)

Cho: Preprint submitted to Elsevier Page 29 of 36

https://doi.org/10.1109/TVLSI.2022.3148327
https://doi.org/10.1007/s11707-018-0725-9


Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

towards cg = 1 for guided. Speci�cally for the study data, cs is 76,078,532 and 1720, respectively,

for non-collapsed and collapsed variants.

The collapse clause in OpenMP can collapse a nested for loop into a big non-nested one for

parallelizing both outer and inner loops. Without collapsing, only the immediate loop following a

collapse clause (the outer loop in line 3 in Algorithm 1) is parallelized. Both cases with and without

the collapse clause were tested. Data synchronization can occur explicitly or implicitly in OpenMP

programming. For explicit data synchronization, the flush construct was used only before reading

�ow accumulation values as shown in Algorithm 4. Alternatively, implicit data synchronization

was tested using the atomic construct with the seq_cst clause (with an implicit strong �ush)

immediately before any write or read operations.

Similar to the other benchmark algorithms, MEFA can in fact store the results of the FindUp

function in a write-once read-only intermediate matrix (let's call this matrix UP) to reduce the

computational burden of �nding upstream cells repetitively in Algorithm 3. The UP matrix is

di�erent from the NIDP matrix in that it stores direct upstream cells in a bitwise-OR manner so

individual cells can be identi�ed later while the NIDP matrix only stores the number of them.

MEFA only needs to know which cells are immediately upstream using this matrix and keeps

track of their status using the �ow accumulation matrix, e�ectively eliminating write operations

to this matrix. The MEFA version using the UP matrix was tested to see the e�ect of increased

memory consumption in favor of reduced computational burden. With this more-memory version,

the minimum memory footprint becomes (S + 2)N B as noted in Table 1. Lastly, the while-loop

version of MEFA was compared with the tail-recursive version.

In short, the following alternative MEFA implementations were tested to select the best one:

1. MEFA 1-D vs. jagged arrays: Since linear memory allocations are already known to be more

e�cient than a series of allocations of smaller memory chunks (Drepper, 2007), this experiment

was used to quickly rule out an ine�cient memory allocation model.

2. MEFA with di�erent schedules (s, d, g) and collapses (n, c): This experiment helped further

get rid of ine�cient OpenMP parallelism strategies for our problem and leave only eight

combined implementations of MEFA below.

Cho: Preprint submitted to Elsevier Page 30 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3. MEFA with �ush vs. atomic (f, a): In this experiment, data synchronization methods were

compared including an explicit �ush only before reading, and atomic writes and reads with

an implicit strong �ush.

4. MEFA with more vs. less memory (m, l): Since MEFA can also be implemented with a

write-once read-only intermediate matrix, this more-memory version of MEFA was compared

with the less-memory version.

5. MEFA with tail recursion vs. while (t, w): Finally for selection of the best MEFA

implementation, tail-call optimization using Algorithm 2 was benchmarked with the iterative

while loop version in Algorithm 5.

A sensitivity analysis was conducted against various chunk sizes 2, 5, 10�90 (every 10), and 100�

1800 (every 100) by varying only the �rst two components of the best implementation: schedules

(s, d, g) and collapses (n, c). The maximum size 1800 was chosen based on the default chunk size

of non-collapsed versions for the static schedule, 1720. For this analysis, the runtime schedule and

OMP_SCHEDULE environment variable were used and only 24 threads were repeated 30 times. The

default chunk sizes were not included in this analysis because they were already tested implicitly

in the previous experiments.

A.2. Results

Performance of jagged arrays The following two MEFA implementations were tested:

� gcfmt: guided schedule with collapsed loops using explicit flushes, more memory with the UP

matrix, tail recursion, and linear arrays; and

� gcfmtj: the same combination as above, but using jagged arrays.

Figure A1 shows that the linear-array version (gcfmt) consistently outperformed the jagged-array

version (gcfmtj) in all the thread cases. However, the performance variability of gcfmt was higher

than that of gcfmtj in many multi-threaded cases (longer violin tails in red) and some runs were

slower than gcfmtj runs (notably in 8 and 9 threads in Figure A1a). Based on these overall results,

only linear arrays were considered for the rest of the experiments.

Cho: Preprint submitted to Elsevier Page 31 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3

5

10

1 3 6 9 12 15 18 21 24
Number of threads

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(a) Compute time violin plots.

10

20

30

1 3 6 9 12 15 18 21 24
Number of threads

R
un

 ti
m

e 
(s

ec
on

ds
)

(b) Run time violin plots.

Figure A1: Performance comparisons of the compute and run times of MEFA (gcfmt) and (gcfmtj). gcfmt,
gcfmtj.

Table A2

Mean compute times of six combinations of three schedule types (s, d, g) without or with collapsed loops (n, c)
using 24 threads. All the variants used explicit flushes, more memory, and tail recursion.

MEFA variant Schedule collapse Compute time (s)

snfmt static not collapsed 2.16
scfmt static collapsed 2.29
dnfmt dynamic not collapsed 1.46
dcfmt dynamic collapsed 92.62
gnfmt guided not collapsed 1.80

gcfmt guided collapsed 1.92

Best schedule Table A2 shows the compute-time performances of six combinations of (s, d, g) and

(n, c) using 24 threads. The dynamic non-collapsed version (dnfmt) performed the best and the

dynamic collapsed version (dcfmt) the worst. For further experiments, only the dynamic scheduling

without collapsed loops (dn variants) was considered.

Other combinations Table A3 shows the mean compute times and ranks of the rest eight

combinations of (f, a), (m, l), and (t, w). In terms of data synchronization performance, the �ush

operation from the four �ush variants took an average compute time of 3 s (4% faster) while the

atomic operation 3 s. For di�erent memory models, on average, the more- and less- memory variants

Cho: Preprint submitted to Elsevier Page 32 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

Table A3

Mean compute times and ranks of eight combinations of data synchronization (f, a), memory (m, l) and
TraceDown (t, w). Mean compute times were calculated over all 720 runs per variant. For each number
of threads, the eight variants were ranked by compute time, and their counts of 1st rank and sum of ranks are
reported. All the variants used dynamic scheduling with non-collapsed loops.

MEFA variant Data
synchronization

Memory TraceDown Time (s) Rank 1 Rank sum Overall rank

dnfmt flush more tail recursion 3.14 20 28 1
dnfmw flush more while 3.19 3 46 2
dn�t flush less tail recursion 3.37 0 118 5
dn�w flush less while 3.36 1 107 4
dnamt atomic more tail recursion 3.35 0 126 6
dnamw atomic more while 3.31 0 93 3
dnalt atomic less tail recursion 3.46 0 156 7
dnalw atomic less while 3.53 0 190 8

took 3 s (5% faster) and 3 s, respectively. Last, the tail-recursive versions took an average of 3 s (1%

faster) and the while-loop versions took 3 s. In other words, the biggest improvement was made by

storing the UP matrix and reducing the computational burden of repeating Algorithm 3 (5%),

followed by synchronizing shared data using the �ush operation immediately before reading it (4%)

and �nally by using tail recursion (1%) in that order. Overall, MEFA (dnfmt) performed the best

and MEFA (dnalw) the worst.

Selection of the best MEFA implementation Figure A2 shows the performances of the eight MEFA

variants as the number of threads grows. The coe�cient of variation (the ratio of the standard

deviation to the mean) of the mean compute time from the di�erent implementations aggregated

by the number of threads ranged from 0.0283 to 0.0469. Therefore, the maximum performance

variability among the eight variants was 5%. As shown in Table A3, MEFA (dnfmt) ranked 1st in

20 numbers of threads, MEFA (dnfmw) in 3, and MEFA (dn�w) in 1. MEFA (dnfmt) was selected

as the best implementation of the proposed algorithm for the later benchmark experiment.

Schedule sensitivity to chunk sizes Figure A3 shows the sensitivity of schedules to chunk sizes. Of

all three, the dynamic schedule performed the best with cd = 2 (1.32 s) and cd = 1400 (1.57 s),

respectively, for non-collapsed and collapsed variants. From the previous experiments, the compute

time of this same schedule in the best MEFA implementation (dnfmt) was 1.46 s with its default

chunk size 1. The guided schedule was relatively insensitive to the chunk size for collapsed variants.

Cho: Preprint submitted to Elsevier Page 33 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

3

5

10

1 3 6 9 12 15 18 21 24
Number of threads

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

Figure A2: Compute time violin plots of the eight MEFA variants. dnfmt, dnfmw, dnamw, dn�w,
dn�t, dnamt, dnalt, dnalw.

Within the non-collapsed and collapsed cases, the compute times of all three schedules tended to

converge to each other as the chunk size grows even though both cases moved in the opposite

directions.

1.6

2.0

2.4

2.8

0 300 600 900 1200 1500 1800
Chunk size

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(a) Non-collapsed variants (_nfmt).

3

10

30

0 300 600 900 1200 1500 1800
Chunk size

C
om

pu
te

 ti
m

e 
(s

ec
on

ds
)

(b) Collapsed variants (_cfmt).

Figure A3: Mean compute time vs. chunk size of MEFA (__fmt). static (s_fmt), dynamic (d_fmt),
guided (g_fmt).

Cho: Preprint submitted to Elsevier Page 34 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

A.3. Discussion

As shown in Table A2, the best OpenMP schedule for MEFA was achieved by using dynamic

scheduling without collapsed loops (dn). However, collapsing nested loops in the same dynamic

schedule (dc) performed the worst among the six tested combinations of schedule types and loop

collapsing. There can be multiple factors that draw this clear line between the two schedules'

performances. However, with a high number of cells (1,825,884,762, 43% of the maximum

representable unsigned int, 4,294,967,295), the overhead of dynamic scheduling over this high

number of parallel tasks is believed to be the most signi�cant factor. Other than this extreme

case, from the fact that static schedules (sn and sc) performed worse than dynamic and guided

schedules, we can induce that top-down tasks for �ow accumulation problems, at least for the studied

area, are not well balanced and require some kinds of load balancing among involved threads. The

overhead cost of dynamic (except for collapsed loops as already discussed) and guided scheduling

was relatively cheaper compared to the cost of imbalanced tasks in static scheduling.

Synchronizing shared data explicitly using the flush construct just before reading the data (f)

was faster than using the atomic construct repeatedly before and after reading and writing it for

implicit �ushing (a). The reduced number of operations is believed to have played a role in this

improved performance with the �ush variants.

Among those implementations of MEFA with dynamic schedules without collapsed loops and

with explicit data �ush, MEFA (dnfmt) performed better than the others in 20 di�erent numbers

of threads. Calculating the intermediate UP matrix only once and saving it in memory relieved

threads of repeating the same calculation many times. This result shows that �nding upstream cells

repeatedly on the �y is more expensive than reading shared memory, even by many threads. It

appears to be contradictory to the benchmark result from Subsection 4.1 that compares MEFA-HP

and MEFA. However, shared-memory usage patterns by both algorithms are di�erent in that MEFA

only reads from the shared UP matrix while the other benchmark algorithms also update their

shared NIDP matrix. Writing to memory is slower than reading from it by a factor of ten (Drepper,

2007) and, if writing operations are repeated by many threads in a shared-memory environment, the

situation can only get worse. Also, we should not forget about false sharing that can invalidate cache

lines that still contain non-dirty memory segments. Compared to the other benchmark algorithms,

Cho: Preprint submitted to Elsevier Page 35 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

MEFA reduces memory write operations in general and the chance of false sharing as well by a

factor of up to three because it writes only once to each �ow accumulation cell while the other

algorithms have to write to each cell in both NIDP and �ow accumulation matrices multiple times.

Tail-call optimization with tail recursion performed faster than the while version, but this result

is interesting because the typical tail-call optimization simply translates tail recursion to a while

loop and there are no good reasons why tail recursion can be faster than the translated while loop. In

this sense, it is not very surprising that tail recursion only showed an improvement of 1% compared

to the while version and this result might be due to some external factors such as unrelated service

processes that happened to be triggered by the operating system during the experiment. With this

negligible performance di�erence in mind, it would be more important to focus on how to more

naturally implement the problem algorithmically. Flow accumulation at one cell is the sum of itself

and the �ow accumulation of its direct upstream cells, which is more recursive than iterative by

its de�nition. This recursive logic in code will eventually be translated to iterative code by the

compiler.

Although MEFA (dnfmt) performed the best and can be suggested, if the size of data becomes

larger than the remaining memory in the system, the best less-memory version of MEFA (dn�w)

can be used to accommodate larger data. Since the maximum performance variability among the

eight variants was only 5% in terms of the coe�cient of variation of the mean compute time

and the worst MEFA (dnalw) was still faster than the fastest benchmark algorithm HPFA, any

MEFA implementation will be su�cient depending on the needs such as less memory, no tail-call

optimization provided by the compiler, etc. As for task scheduling, the OpenMP runtime schedule

can be used with environment variables to choose the best scheduling dynamically depending on

the problem and computational situation.

From the sensitivity analysis, it was found that the dynamic schedule performed the best with

a chunk size of 2 for non-collapsed variants (dnfmt). Its mean compute time (1.32 s) was 10% faster

than that of dnfmt with the default chunk size of 1 (1.46 s). This result was interesting because

the performance deteriorated when the chunk size dropped from 2 to 1 even though it showed an

improving trend with a decreasing chunk size in Figure A3a. Even with this unexpected observation,

Cho: Preprint submitted to Elsevier Page 36 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

MEFA (dnfmt) with the default chunk size of 1 is still suggested as the best implementation based

on the overall performance trend.

Cho: Preprint submitted to Elsevier Page 37 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

1: function SumUp(FAC, r, c, u)
2: s← 0
3: Flush FAC ▷ Synchronize FAC among threads
4: if u ∧̇ 32 ̸= 0 then ▷ If north-west
5: a← FACr−1,c−1

6: if a = 0 then return 0
7: s← s+ a
8: end if

9: if u ∧̇ 64 ̸= 0 then ▷ If north
10: a← FACr−1,c

11: if a = 0 then return 0
12: s← s+ a
13: end if

14: if u ∧̇ 128 ̸= 0 then ▷ If north-east
15: a← FACr−1,c+1

16: if a = 0 then return 0
17: s← s+ a
18: end if

19: if u ∧̇ 16 ̸= 0 then ▷ If west
20: a← FACr,c−1

21: if a = 0 then return 0
22: s← s+ a
23: end if

24: if u ∧̇ 1 ̸= 0 then ▷ If east
25: a← FACr,c+1

26: if a = 0 then return 0
27: s← s+ a
28: end if

29: if u ∧̇ 8 ̸= 0 then ▷ If south-west
30: a← FACr+1,c−1

31: if a = 0 then return 0
32: s← s+ a
33: end if

34: if u ∧̇ 4 ̸= 0 then ▷ If south
35: a← FACr+1,c

36: if a = 0 then return 0
37: s← s+ a
38: end if

39: if u ∧̇ 2 ̸= 0 then ▷ If south-east
40: a← FACr+1,c+1

41: if a = 0 then return 0
42: s← s+ a
43: end if

44: return s
45: end function

Algorithm 4: Pseudocode for the SumUp function. ∧̇ is the bitwise AND operator.

Cho: Preprint submitted to Elsevier Page 38 of 36



Memory-E�cient Flow Accumulation Using a Look-Around Approach and Its OpenMP Parallelization

1: function TraceDown(FDR, FAC, r, c)
2: a← 0
3: repeat

4: FACrc ← a+ 1
5: if FDRrc = north-west then
6: (r, c)← (r − 1, c− 1)
7: else if FDRrc = north then

8: r ← r − 1
9: else if FDRrc = north-east then
10: (r, c)← (r − 1, c+ 1)
11: else if FDRrc = west then
12: c← c− 1
13: else if FDRrc = east then
14: c← c+ 1
15: else if FDRrc = south-west then
16: (r, c)← (r + 1, c− 1)
17: else if FDRrc = south then

18: r ← r + 1
19: else if FDRrc = south-east then
20: (r, c)← (r + 1, c+ 1)
21: end if

22: if r /∈ [1,m] or c /∈ [1, n] or FDRrc = none then break

23: u← FindUp(FDR, r, c)
24: if u = 0 then break

25: a← SumUp(FAC, r, c, u)
26: until a = 0 ▷ While all upstream cells are already computed
27: end function

Algorithm 5: Pseudocode for the while version of the TraceDown function. No tail-call
optimization is needed.

Cho: Preprint submitted to Elsevier Page 39 of 36


	Introduction
	Benchmark algorithms
	HPFA
	PFA
	FastFlow

	Methods and data
	Considerations for shared-memory parallel computing
	Memory-efficient flow accumulation (MEFA)
	Performance experiments
	Compilation
	Time profiling
	Analysis of strong scaling
	Input flow direction files


	Results and discussion
	MEFA-HP vs. HPFA: Impacts of the proposed approach on HPFA
	Output validation
	Speedup and efficiency
	Performance comparisons
	Memory efficiency of MEFA

	Conclusions
	Best MEFA implementation
	Methods
	Results
	Discussion


