
OPEN SOURCE CANOPY CLASSIFICATION IN THE 
STATE OF GEORGIA
CREATING A REPRODUCIBLE METHOD FOR THE CLASSIFICATION OF CANOPY  USING NAIP IMAGERY  AND OPEN SOURCE PY THON LIBRARIES –

PRELIMINARY  RESULTS



BACKGROUND

 Deforestation:

 loss of forested lands leads to increased CO2 being placed into the atmosphere while simultaneously eliminating 
carbon storage (Bala, Govindasamy, et al. 2007) 

 Smaller scales it leads to both increased runoff rates and subsequently increased erosion, especially in areas 
where no plant reclamation is initiated (Benito, E., et al, 2003) 

 Monitoring:  

 Large scale monitoring is increasingly time consuming.  

 Commercial software dedicated to completing these tasks such as eCognition (Trimble Inc.) or Textron Systems 
Feature Analyst (Textron Systems 2010) are expensive and closed source. 

 Previous studies:

 GFC Canopy Study

 Textrons Feature Analyst

 PyTorch, Keras - Tensor Flow, Orfeo Toolbox



NAIP IMAGERY 

 National Agricultural Imagery Program 

 Collected by U.S. Department of Agriculture (USDA) aerial photography division during growing 
seasons. 

 1 m resolution. 

 Now 0.6m after 2019

 3-Band

 Red, Green, Blue

 4-Band

 Red, Green, Blue, Near Infrared (NIR)

 Preprocessing quality control removes any image that has more than 10% cloud cover per quarter quad 
rendering the need for a cloud mask negligible. 



THE CASE FOR OPEN SOURCE DEVELOPMENT

 What is open source?

 Open source products include permission to use the source code, design documents, or content of the product.

 ‘Guarantees access to the source code for audit and modification and the ability to redistribute the software with no 
additional costs.’ per OSGeo

 Open Source Geospatial Foundation (OSGeo) 

 ‘A not-for-profit organization whose mission is to foster global adoption of open geospatial technology by being an 
inclusive software foundation devoted to an open philosophy and participatory community driven development.’

 Lack of insight into the inner workings of commercial software leads to uncertainty about validity of results 
(Sonnenburg 2007).

 Leads to increased collaboration between researchers, and greater transparency (Sonnenburg 2007). 

 Allows for reproducibility and modification to fit different needs (Sonnenburg 2007). 



SUPERVISED CLASSIFICATION 

 Widely used robust method for approaches for classification 

 Uses training data to create classifiers which are then in turn used to predict and learn the 
characteristics in unclassified data. (Belgiu & Drăguţ 2016)

 Popular types: 

 Support Vector Machines (SVM)

 Artifical Nueral Network (ANN)

 Random Forests (RF) 



PYTHON & 
PYTHON 
PACKAGES 

 A robust language suitable for automating, machine learning, and 
statistical analysis.

 Packages used: 

 Geospatial Data Abstraction Library (GDAL)

 NumPy 

 Scikit-learn



PYTHON & PYTHON PACKAGES

 Geospatial Data Abstraction Library (GDAL)

 ‘GDAL is a C++ translator library for more than 200 raster and vector geospatial data formats.’ – OSGeo

 Core features as detailed by OSGeo

 Reading and writing of raster and vector geospatial formats

 Data format translation

 Geospatial processing: subsetting, image warping, reprojection, mosaicing, tiling, DEM processing.

 Python API

 NumPy 

 ‘NumPy is the fundamental package for scientific computing with Python’

 Creation and processing of arrays or matrices 

 Both GDAL’s python API and Scikit-learn utilizes numpy



PYTHON & PYTHON PACKAGES

 Scikit-learn 

 Popular and robust machine learning (ML) python library capable of both regression and classification analysis. 

 Built on top of NumPy (van der Walt et al. 2011) and SciPy (Vertanen et al. 2019). 

 Why Scikit-learn?

 Other ML packages focus on ANN almost exclusively.  

 I.E. Keras-Tensorflow, Pytorch

 Scikit-learn can run parallel across the central processing unit (CPU)

 Others can run parallel across graphics processing units [GPU] , but only on Nvidia GPU’s

 Being built on NumPy and SciPy allows for increased efficiency when using geospatial data.

 Thorough documentation 



RANDOM FORESTS

 Algorithm 

 A combined multi tree predictor built upon bootstrap aggregating.

 Each node is split using a random selection of features at the most optimal combination of 
features/split 

 The most popular class is chosen based of a vote after the specified number of trees are 
generated (Breiman 2001).

 Reasons for choosing

 In cases of land-cover classification random forests is found to be as effective, if not more 
effective as other popular similar ensemble algorithms such as boosting and bagging (Breiman
2001, Gislason et al. 2006)

 Considerably lighter load computationally than the popular Ada-boost algorithm (Freund & 
Schapire 1996). 

 `n_jobs` parameter allows for parallelzation across CPU cores

 Coniderations

 Can use a considerable of memory as a matrix of number of samples (N) x number of trees (T) is 
stored in memory (Gislason et al. 2006) 



EXTRA TREES CLASSIFIER

 Algorithm 

 Like RF in that it is a multi-tree predictor built using an ensemble 
of decision trees

 ET classifier splits the nodes of the tree completely at random 
(Geurts et al. 2009)

 ET uses the entirety of the sample and not just the bootstrap to 
grow trees, meaning each tree is independent or uncorrelated to 
the last (Guerts et al. 2009)

 Reasons for choosing

 higher bias and lower variance than the standard RF 

 Suited for noisy or highly correlated datasets (Lawson et al. 2017, 
Xu et al. 2010). 

 ~ 3x faster computationally



WHY THE NIR BAND IS NEEDED

 Two indices tested: 

 Visually Atmospheric Resistant Index (VARI) – RGB index

 Atmospheric Resistant Vegetation Index (ARVI) – NIR index

 Near Infra-Red band is absorbed by photosynthetically active vegetation, lesser by photosynthetically 
inactive vegetation, and reflected by bodies of water and impervious surfaces. 

 0.75 μm – 0.8 μm NIR wavelengths detects what RGB bands cannot (Tucker 1979). 



VISUALLY ATMOSPHERIC INDEX (VARI)

 Uses only visible light bands, making it potentially more accessible. 

 Formula: 

 Needs to be normalized between values 1 and -1 for classification: 

def norm(array):
array_min, array_max = array.min(), array.max()

return ((1 - 0) * ((array - array_min) / (array_max - array_min))) + 1



Non -normalized VARI – No water detected Normalized VARI – Water detected but has high error A RVI – Little to no error with water detection



ATMOSPHERIC RESISTANT VEGETATION INDEX (ARVI)

 Atmospherically Resistant Vegetation Index 
(VARI)

 Creates an index that allows for higher variation between 

vegetation and other features to allow for more accurate 
identification

 Near Infra-Red band is absorbed by photosynthetically

active vegetation and reflected by bodies of water and 
impervious surfaces.

 Formula:



METHODS –
PREPARING DATA

 Training Data

 Shapefile drawn in 
QGIS software with 
values of 1 and 2

 1: Non-canopy

 2: Canopy

 Training data shapefile 
is rasterized with nodata 
values as zero



PARAMETER OPTIMIZATION

 19 different parameters to adjust in the ET model

 `RandomizedSearchCV` or Randomized Search Cross-Validation used to find ideal parameters

 Parameters chosen:

 n_estimators: number of trees generated in a forest

 min_leaf_samples: samples required to split a node

 Training data split into test and training sets

 Test: 33%

def split_data(training_raster, training_fit_raster):

y _raster = gdal.Open(training_raster)

t =  y _raster.GetRasterBand(1).ReadAsArray().astype(np.float32)
x_raster = gdal.Open(training_fit_raster)

n = x_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)
y  = t[t >  0]
X = n[t > 0]

X = X.reshape(-1, 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

return X_train, X_test, y_train, y_test



PARAMETER OPTIMIZATION

def tune_hyperparameter(training_raster, training_fit_raster):

y_raster = gdal.Open(training_raster)

t = y_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)
x_raster = gdal.Open(training_fit_raster)

n = x_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)

y = t[t > 0]
X = n[t > 0]

X = X.reshape(-1, 1)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.33)

n_estimators = [int(x) for x in np.linspace(start=10, stop=500, num=10)]
min_samples_leaf = [int(x) for x in np.linspace(start=10, stop=500, num=10)]

random_grid = {
'n_estimators': n_estimators,

'min_samples_leaf': min_samples_leaf

}
etc = ExtraTreesClassifier(n_estimators=100, n_jobs=-1, max_features=None)

clf = RandomizedSearchCV(etc, random_grid, random_state=0, verbose=3)
clf.fit(X_test, y_test)

print(clf.best_params_)

 A list of values is generated for each parameter.

 The values are then chosen at random and paired for cross validation. 



PARAMETER OPTIMIZATION



PARAMETER OPTIMIZATION



METHODS – TRAINING MODEL

 Extra Trees Classifier

 (X, y) 

 X contains features

 y contains labels

 Training data set is applied to proper 
ARVI raster, and subsequently applied to 
the rest of the dataset.

y_raster = gdal.Open(training_raster)

t = y_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)

x_raster = gdal.Open(training_fit_raster)

n = x_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)

y = t[t > 0]

X = n[t > 0]

X = X.reshape(-1, 1)

clf = ExtraTreesClassifier(n_estimators=41, n_jobs=-1,

max_features=None,

min_samples_leaf=5, class_weight={1: 2, 2: 0.5})

ras = clf.fit(X, y)

r = gdal.Open(in_raster)

class_raster = r.GetRasterBand(1).ReadAsArray().astype(np.float32)

class_array = class_raster.reshape(-1, 1)

ras_pre = ras.predict(class_array)

ras_final = ras_pre.reshape(class_raster.shape)

ras_byte = ras_final.astype(dtype=np.byte)



ADDITIONAL IMAGE PROCESSING

 5x5 Median Filter applied to numpy array to smooth 
result and reduce noise.  

 Boolean operator, only applied if `smoothing=True`.
Smoothing=False

Smoothing=True



Cleveland, Ga Extra Trees Classifier 
– Tr ained NAIP TILE

2 015 NAIP Imagery



2 015 NAIP Imagery
NW Folkston, Ga Extra Trees Classifier



NW Folkston, Ga Extra Trees Classifier Textron Systems Feature Analyst 



2 015 NAIP Imagery
Blu e Ridge Mountains, Ga Extra Trees 
Classifier



Blu e Ridge Mountains, Ga Extra Trees 
Classifier

Textron Systems Feature Analyst 



2 015 NAIP Imagery
A tlanta, Ga Extra Trees Classifier



A tlanta, Ga Extra Trees Classifier Textron Systems Feature Analyst 



FUTURE - QUANTIFYING COMPARISONS

 Moving window comparison coefficient.

 Fw = Index for moving window with window size
w

 w = window size

 Tw = number of windows with window size w

 a1-a2 = number of cells with category i in 
map 1 and map 2
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