OPEN SOURCE CANOPY CLASSIFICATION IN THE
STATE OF GEORGIA

CREATING A REPRODUCIBLE METHOD FOR THE CLASSIFICATION OF CANOPY USING NAIPIMAGERY ANDOPEN SOURCE PYTHON LIBRARIES —
PRELIMINARY RESULTS




BACKGROUND

= Deforestation:

= Joss of forested lands leads to increased CO2 being placed into the atmosphere while simultaneously eliminating
carbon storage (Bala, Govindasamy, et al. 2007)

= Smaller scales it leads to both increased runoff rates and subsequently increased erosion, especially in areas
where no plant reclamation is initiated (Benito, E., et al, 2003)

= Monitoring:
= Large scale monitoring is increasingly time consuming.

= Commercial software dedicated to completing these tasks such as eCognition (Trimble Inc.) or Textron Systems
Feature Analyst (Textron Systems 2010) are expensive and closed source.

= Previous studies:
» GFC Canopy Study

= Textrons Feature Analyst

= PyTorch, Keras - Tensor Flow, Orfeo Toolbox



NAIP IMAGERY

= National Agricultural Imagery Program

= Collected by U.S. Department of Agriculture (USDA) aerial photography division during growing
seasons.

= 1 m resolution.
= Now 0.6m after 2019
= 3-Band
= Red, Green, Blue
= 4-Band
= Red, Green, Blue, Near Infrared (NIR)

= Preprocessing quality control removes any image that has more than 10% cloud cover per quarter quad
rendering the need for a cloud mask negligible.



THE CASE FOR OPEN SOURCE DEVELOPMENT

= Whatis open source?
= Open source products include permission to use the source code, design documents, or content of the product.

= ‘Guarantees access to the source code for audit and modification and the ability to redistribute the software with no
additional costs.”’ per OSGeo

= Open Source Geospatial Foundation (OSGeo)

= ‘A not-for-profit organization whose mission is to foster global adoption of open geospatial technology by being an
inclusive software foundation devoted to an open philosophy and participatory community driven development.’

= Lack of insight into the inner workings of commercial software leads to uncertainty about validity of results
(Sonnenburg 2007).

= Leadsto increased collaboration between researchers, and greater transparency (Sonnenburg 2007).

= Allows for reproducibility and modification to fit different needs (Sonnenburg 2007).
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SUPERVISED CLASSIFICATION

= Widely used robust method for approaches for classification

= Uses training data to create classifiers which are then in turn used to predict and learn the
characteristics in unclassified data. (Belgiu & Dragut 2016)

= Popular types:

= Support Vector Machines (SVM)
= Artifical Nueral Network (ANN)
= Random Forests (RF)



A robust language suitable for automating, machine learning, and
statistical analysis.

= Packages used:

= Geospatial Data Abstraction Library (GDAL)
= NumPy

PYTHON & = Scikit-learn

PYTHON
PACKAGES




PYTHON & PYTHON PACKAGES

Geospatial Data Abstraction Library (GDAL)

‘GDAL s a C++ translator library for more than 200 raster and vector geospatial data formats.” — OSGeo
= Core features as detailed by OSGeo

= Reading and writing of raster and vector geospatial formats

= Data format translation

= Geospatial processing: subsetting, image warping, reprojection, mosaicing, tiling, DEM processing.

= PythonAPI

= NumPy

‘NumPy is the fundamental package for scientific computing with Python’
Creation and processing of arrays or matrices

= Both GDAL’s python API and Scikit-learn utilizes numpy



PYTHON & PYTHON PACKAGES

= Scikit-learn
= Popular and robust machinelearning (ML) python library capable of both regression and classification analysis.

= Built on top of NumPy (van der Walt et al. 2011) and SciPy (Vertanen et al. 2019).

= Why Scikit-learn?
= Other ML packages focus on ANN almost exclusively.
= I.E. Keras-Tensorflow, Pytorch
= Scikit-learn can run parallel across the central processing unit (CPU)
= Others can run parallel across graphics processing units [GPU], but only on Nvidia GPU’s
= Being built on NumPyand SciPy allows for increased efficiency when using geospatial data.

= Thorough documentation



RANDOM FORESTS

= Algorithm
= A combined multi tree predictor built upon bootstrap aggregating.

= Eachnodeis split using a random selection of features at the most optimal combination of
features/split

X
=  Themost popular class is chosen based of a vote after the specified number of trees are
generated (Breiman 2001).
AN NN NN
= Reasons for choosing \\ ’/\ e /\

= Incases of land-cover classification random forests is found to be as effective, if not more
effective as other popular similar ensemble algorithms such as boosting and bagging (Breiman
2001, Gislason et al. 2006)
=  Considerably lighter load computationally than the popular Ada-boost algorithm (Freund &
Schapire 1996).
Y

=  'n_jobs" parameter allows for parallelzation across CPU cores

= Coniderations

= Canusea considerable of memory as a matrix of number of samples (N) x number of trees (T) is
stored in memory (Gislason et al. 2006)



EXTRA TREES CLASSIFIER

= Algorithm

= Like RF in that it is a multi-tree predictor built using an ensemble
of decision trees

= ET classifier splits the nodes of the tree completely at random
(Geurts et al. 2009)

= ET uses the entirety of the sample and not just the bootstrap to
grow trees, meaning each tree is independent or uncorrelated to
the last (Guerts et al. 2009)

= Reasons for choosing
= higher bias and lower variance than the standard RF

= Suited for noisy or highly correlated datasets (Lawson et al. 2017,
Xu et al. 2010).

= ~ 3x faster computationally



WHY THE NIR BAND IS NEEDED

= Two indices tested:
= Visually Atmospheric Resistant Index (VARI) — RGB index
= Atmospheric Resistant Vegetation Index (ARVI) — NIR index

= Near Infra-Red band is absorbed by photosynthetically active vegetation, lesser by photosynthetically
inactive vegetation, and reflected by bodies of water and impervious surfaces.

= 0.75 um — 0.8 um NIR wavelengths detects what RGB bands cannot (Tucker 1979).



VISUALLY ATMOSPHERIC INDEX (VARI)

= Uses only visible light bands, making it potentially more accessible.
= Formula:

(Green — Red)
(Green + Red — Blue)

VARI =

= Needs to be normalized between values 1 and -1 for classification:

def norm(array):
array_min, array_max = array.min(), array.max()
return ((1 - @) * ((array - array_min) / (array_max - array_min))) + 1



o
s
-

Non-normalized VARI — No water detected Normalized VARI — Water detected but has hlgh error ARVI - Little to no error with water detection



ATMOSPHERIC RESISTANT VEGETATION INDEX (ARVI)

ARVIVALUES
Il -0.311294764280319
Il -0.0621776640415192
-0.0194718754291535
0.0445868074893951
0.053483846783638
I 0.0712779253721237
[ 0.0890720039606094
70 0.0979690432548523
I 0.106866082549095
[ 0.127507213711739
I 0.139251305580139
I 0.16309537088871
I 0.174839462757111
Il 0.198683528065681
Il 0.210427619934082
Il 0.240321671962738
Il 0.275909829139709
Il 0.311497986316681
Il 0.347086143493652
Il 0.382674300670624
Il 0.400468379259109

= Atmospherically Resistant Vegetation Index
(VARI)

= Creates an index that allows for higher variation between

vegetation and other features to allow for more accurate
identification

= Near Infra-Red band is absorbed by photosynthetically
active vegetation and reflected by bodies of water and
impervious surfaces.

= Formula:

(NIR — (2 * Red) + Blue)
(NIR + (2 + Red) + Blue)

ARVI =




METHODS -
PREPARING DATA

= Training Data

= Shapefile drawn in
QGIS software with
values of 1 and 2

= 1: Non-canopy
= 2: Canopy

= Training data shapefile
is rasterized with nodata
values as zero

Area

=Y

R ow

Column




PARAMETER OPTIMIZATION

= 19 different parameters to adjust in the ET model

= “RandomizedSearchCV" or Randomized Search Cross-Validation used to find ideal parameters

- Parameters chosen:

= n_estimators: number of trees generated in a forest def'split_data(training_raster, training_fit_raster):

. . . : : y _raster = gdal.Open(training_raster)
mln—leaf—samples' samples requlred to Spllt anode t = y_raster.GetRasterBand(1). ReadAsArray().astype(np.float32)

x_raster = gdal.Open (training_fit_raster)

n = x_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)

y =t[t> 0]

= Test: 33% X =n[t>o0]

X = X.reshape(-, 1)

X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.33)

= Training data split into test and training sets

return X_ train, X_test,y_train,y_test



PARAMETER OPTIMIZATION

def tune_hyperparameter (training_raster, training fit_raster):

y_raster = gdal.Open(training_raster)

t = y_raster.GetRasterBand(1).ReadAsArray().astype(np.float32)
x_raster = gdal.Open(training_fit_raster)

n = x_raster.GetRasterBand (1) .ReadAsArray().astype(np.float32)
y = t[t > 0]

X = n[t > 0]

X = X.reshape(-1, 1)

= Alist of values is generated for each parameter. ;(—';’3‘*';‘1”: X_test, y_train, y test = train_test_split(X, y, test size =

= The values are then chosen at random and paired for cross validation. n_estimators = [int(x) for x in np.linspace(start=10, stop=500, nun=10)]
min_samples_leaf = [int(x) for x in np.linspace(start=10, stop=500, num=10)]
random_grid = {

'n_estimators': n_estimators,

‘min_samples_leaf': min_samples_leaf
}
etc = ExtraTreesClassifier(n_estimators=100, n_jobs=-1, max_features=None)
clf = RandomizedSearchCV(etc, random_grid, random_state=@, verbose=3)
clf.fit(X_test, y_test)

print(clf.best_params_)



CV Score —n_estimators

Score of n_estimators & min samples leaf
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METHODS — TRAINING MODEL

= Extra Trees Classifier

y_raster = gdal.Open(training raster)
[ ()(; )7) t = y_raster.GetRasterBand(1l).ReadAsArray().astype(np.float32)
x_raster = gdal.Open(training fit_raster)
x_raster.GetRasterBand(1).ReadAsArray() .astype(np.float32)
t[t > 0]
n[t > 0]
X.reshape(-1, 1)
clf = ExtraTreesClassifier(n_estimators=41, n_jobs=-1,
max_features=None,
min_samples_leaf=5, class_weight={1: 2, 2: 0.5})

= X contains features

y
X
= y contains labels X

ras = clf.fit(X, y)

= Training data set is applied to proper ¢ = gdal.Open(in_raster)
. class_raster = r.GetRasterBand(1).ReadAsArray().astype(np.float32)
ARVI raster, and subsequently applied to class array = class raster.reshape(-1, 1)
the rest Of the dataset. ras_pre = ras.predict(class_array)

ras_final = ras_pre.reshape(class_raster.shape)
ras_byte = ras_final.astype(dtype=np.byte)



ADDITIONAL IMAGE PROCESSING

5x5 Median Filter applied to numpy array to smooth
result and reduce noise.

Sm oothing=False

Boolean operator, only applied if “smoothing=True .

Smoothing=True
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FUTURE - QUANTIFYING COMPARISONS

= Moving window comparison coefficient. — P ]
= Fw = Index for moving window with window size
W aq; — dy;
1 & -
= w =window size F 1 1=1
= Tw =number of windows with window size w w t 2 2
= a1-a2 = number of cells with categoryiin w s=1 w
map 1 and map 2
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