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ABSTRACT

The Memory-E�cient Watershed Delineation (MESHED) parallel algorithm
is introduced for Contiguous United States (CONUS)-scale hydrologic
modeling. Delineating tens of thousands of watersheds for a continental-
scale study can not only be computationally intensive, but also be memory-
consuming. Existing algorithms require separate input and output data
stores. However, as the number of watersheds to delineate and the resolution
of input data grow signi�cantly, the amount of memory required for an
algorithm also quickly increases. MESHED uses one data store for both
input and output by destructing input data as processed and a node-skipping
depth-�rst search to further reduce required memory. For 1000 watersheds
in Texas, MESHED performed 95% faster than the Central Processing
Unit (CPU) benchmark algorithm using 33% less memory. In a scaling
experiment, it delineated 100,000 watersheds across the CONUS in 13.64 s.
Given the same amount of memory, MESHED can solve 50% larger problems
than the CPU benchmark algorithm can.
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� Year �rst available: 2022
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� Year �rst available: 2013

� Program language: C++
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1. Introduction

I introduce the Memory-E�cient Watershed Delineation (MESHED) algorithm for delineating

tens of thousands of watersheds for Contiguous United States (CONUS)-scale hydrologic modeling

involving dozens of billions of �ow direction cells. A watershed is a land area from which all

upstream areas drain surface runo� �ows through a common drainage point called the watershed

outlet (Kotyra, 2023). It is one of basic parameters for hydrologic studies (Tesfa et al., 2011) and

delineating their boundaries (watershed delineation) is a fundamental task (Kotyra, 2023). Recent

development in watershed delineation algorithms includes Tarboton (2010), Haag et al. (2020), and
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Kotyra (2023). Tarboton (2010) introduced GageWatershed, a Message Passing Interface (MPI)

(Message Passing Interface Forum, 2021)-based parallel algorithm. Haag et al. (2020) generalized

their earlier Watershed Marching Algorithm (Haag et al., 2018) where the watershed boundary

is marched around using data structures speci�cally designed for their proposed method (Haag

and Shokoufandeh, 2019). This method requires a data conversion of the �ow direction to their

speci�c data model, requiring additional computational resources, and it is not possible to delineate

watersheds directly using the �ow direction matrix (Kotyra, 2023). Kotyra (2023) introduced a

Compute Uni�ed Device Architecture (CUDA)-based watershed delineation algorithm using the

Graphics Processing Unit (GPU) (in this study, referred to as the Watershed Delineation Algorithm

for GPU or WDG for short).

Continental-scale modeling typically requires a lot of memory just to store input and output

data. Many existing algorithms that use one Central Processing Unit (CPU) or one GPU do not

work if the data cannot �t in either Random-Access Memory (RAM) for CPU computing or Video

RAM (VRAM) for GPU computing unless we use slower external or swap memory. Barnes (2017)

developed an open-source hydrologic software suite called RichDEM, which uses the MPI for multi-

CPU distributed computation of di�erent hydrologic parameters. However, it does not support

parallel watershed delineation (Barnes, 2018). GageWatershed also uses the MPI for parallelization,

but its use of MPI is limited for �message passing between multiple processes on a single computer

(with multiple cores),� not for message passing between multiple computers to accommodate larger

data than the system memory of one computer (Tarboton, 2010). Similarly, WDG is limited to

the system memory of one computer because it uses one GPU and data needs to be transferred

back and forth between the CPU and GPU. For CONUS-scale watershed delineation using the

1′′ National Elevation Dataset (NED) (U.S. Geological Survey, 2023) Digital Elevation Model

(DEM), the combined size of input (�ow direction in a byte matrix) and output (watersheds in

a four-byte matrix) data is 69.8GiB, which we will review again in Section 3. Unfortunately, I

was not able to solve this CONUS-scale watershed delineation problem using GageWatershed and

WDG without using slow swap memory because the system memory is limited to 64GiB and both

algorithms cannot run on multiple CPUs. To improve this situation, we can consider two approaches

for parallel watershed delineation: (1) a memory-e�cient single-CPU parallel solution using Open

Multi-Processing (OpenMP) (Dagum and Menon, 1998), which supports parallel computing through

multithreading in one CPU and (2) a multi-CPU distributed parallel solution using the MPI, which

uses networking to utilize multiple CPUs. This study focuses on the former approach because it

only requires one CPU, which is a typical computing environment for desktop users.

The objective of this study is to develop a single-CPU OpenMP parallel algorithm for CONUS-

scale watershed delineation to accommodate as much input single-�ow direction (D8) data as

possible in the memory of one computer. It is a new single-CPU parallel algorithm using the

shared memory model of OpenMP. Section 2 reviews how GageWatershed and WDG work, and

analyzes their memory requirements. Section 3 describes the proposed MESHED algorithm in detail

Cho: Preprint submitted to Elsevier Page 3 of 26



Avoid backtracking and burn your inputs: CONUS-scale watershed delineation using OpenMP

and introduces three experiments for benchmarking and scaling tests whose results are discussed in

Section 4.

2. Memory requirements of existing parallel algorithms

Pseudocode for GageWatershed (Tarboton, 2010) is listed in Algorithm A1. GageWatershed

uses the 2-byte signed integer type (int16_t) for the D8 �ow direction matrix. It �rst creates a

watershed matrix (4-byte signed integer type int32_t), assigns watershed identi�ers (IDs) at their

outlet cells, and enqueues their locations to a queue. It then creates a neighbor matrix (2-byte signed

integer type int16_t) and sets 1 for cells with a �ow direction. Any matrices in GageWatershed

require additional top and bottom border arrays of size of the number of columns C for distributed

computing by multiple processes (CPU cores). While the queue is not empty, each process repeats

the following steps. A cell location is dequeued and, if its watershed ID is not assigned yet, its

downstream value of the watershed matrix is copied to it. If any upstream cell of the dequeued one

has no value in the watershed matrix, its cell in the neighbor matrix is decremented by 1 and, if

this value becomes 0 (never visited before), it is enqueued. Once the queue of a process is empty, its

border arrays are exchanged with the top and bottom neighbor processes. If there are any cells with

a watershed ID in the exchanged border arrays, they are enqueued. The neighbor border arrays

are cleared and the above steps are repeated until all processes empty their queue. GageWatershed

uses two 2-byte signed integer (int16_t) matrices for the �ow direction and neighbor matrices,

and a 4-byte signed integer (int32_t) for the watershed matrix, requiring a minimum memory

size of 8
(
N + 2

√
N
)
B where

√
N is an approximation of the number of columns C assuming

a square input matrix. If this algorithm were optimized for low memory consumption, it would

require 6
(
N + 2

√
N
)
B because the �ow direction and neighbor matrices can be stored in the

1-byte unsigned integer type (uint8_t).

Algorithms A2�A7 show pseudocode for WDG (Kotyra, 2023). WDG starts by sending the

�attened cell indices of outlets (4-byte unsigned integer type uint32_t) and their watershed IDs

(1-byte unsigned integer type uint8_t) to the CUDA memory. The D8 �ow direction matrix (1-byte

unsigned integer type uint8_t) is �attened in parallel using OpenMP into a 1-dimensional array

called a transfer array (uint8_t). Its length is the number of cells N in the input �ow direction

matrix. It then �ags all outlet cells in the transfer array as a none direction to prevent them from

being traversed through. This transfer array is copied to the GPU memory and converted to a target

array (4-byte unsigned integer type uint32_t) in a global CUDA kernel function. Each element in

the target array contains the index of its downstream element or its own index if it is a terminal

element (either �owing out of the �ow direction matrix or into an outlet cell). In another CUDA

function, the value of the downstream cell of each target array element is copied to the latter

element if they are di�erent. This kernel function is repeatedly called until there are no changes.

This process propagates terminal cell indices up through all common watershed elements in the

target array. Now, the transfer array in the CUDA memory is cleared with a none-basin value and a
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kernel function assigns their watershed IDs to the outlet elements in the transfer array. At this point,

all the upstream cells of a watershed in the target array share the same index of their outlet cell and

the outlet cell in the transfer array has its watershed ID. Yet another kernel function copies over

the watershed ID to all those upstream elements in the transfer array, �nalizing the assignment of

watershed IDs. Finally, the transfer array is copied out of the GPU into its corresponding transfer

array in the main memory. WDG visits all the cells in the arrays regardless of the number of

watersheds. Only considering data stores with the number of elements N , WDG uses three 1-byte

unsigned integer (uint8_t) arrays�the input �ow direction matrix and the transfer array in the

CPU, and the transfer array in the GPU�and one 4-byte unsigned integer (uint32_t) array�the

target array in the GPU�totaling 2N B in the CPU and 5N B in the GPU. Its combined minimum

memory requirement is 7N B and the maximum supported number of watersheds as implemented

is 255 (28 minus null; 255 is used to indicate null cells). This algorithm could be reimplemented to

use a 4-byte integer type to identify more than 255 watersheds. In this case, the CPU, GPU, and

combined memory requirements would be 5N B, 8N B, and 13N B, respectively.

As we reviewed above, if any algorithms are to be run for performance without slow memory

swapping, input and output data must �t in the memory at a minimum. However, when N becomes

large, the input data alone can take up a lot of memory space, leaving less or not enough memory

for the output watershed matrix and other necessary intermediate outputs. Given a �xed amount

of memory, the scale of the problem cannot grow beyond the maximum available memory. If the

data size N is too large such that the required memory exceeds the available memory, the scale

of the problem becomes the problem of scale eventually. For a CONUS-scale hydrologic analysis,

N can be 15 billions or greater if a spatial resolution of 30m or higher is desired. Since typical

�ow direction encoding uses a 1-byte integer type, just reading in the input �ow direction matrix

requires 14.0GiB (15× 109 × 1024−3GiB) at a minimum. If the number of watersheds to delineate

is greater than 65,535, which is the maximum value of the unsigned 2-byte integer type (uint16_t),

the output watershed matrix must be of a 4-byte integer type (int32_t or uint32_t). For both the

input and output matrices, we would need at least 69.8GiB available memory. Unfortunately, the

computer that I used for this study only has 64GiB of memory and my GPU has 12GiB of VRAM,

so both GageWatershed and WDG cannot even allocate enough memory for both the input and

output matrices. As of May 2024, to the best of my knowledge, the maximum available VRAM size

on the market is 80GiB in NVIDIA A100 and its retail price can be prohibitive (well over $10,000)

for watershed delineation purposes. The next largest VRAM size is 48GiB in NVIDIA RTX 6000

Ada or A6000, which is not enough in this case. In other words, I cannot solve this CONUS-scale

watershed delineation problem with N ≥ 14,998,630,400 using either GageWatershed or WDG

without memory swapping on a computer with 64GiB RAM.

We can think of two approaches to address this memory issue: (1) saving memory in one

computer to accommodate larger data and (2) using multiple computers to distribute big data.

I could add one more computer and use the MPI for distributed watershed delineation, but, again,
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there are no existing MPI algorithms for that yet. Or the problem could be split into multiple

smaller manageable subproblems, each of which needs to be carefully designed to avoid hydrologic

interdependency between problem boundaries. Another option is to develop a new algorithm that is

memory e�cient for problems larger�up to a certain extent of course�than the available memory

and, at the same time, is parallelizable for performance in a straightforward manner. In this study,

I took the latter approach and introduce a new algorithm using the D8 �ow direction for CONUS-

scale watershed delineation that requires less memory of 4N B or 55.9GiB for the problem with

N = 14,998,630,400.

3. Methods and data

3.1. Watershed delineation as a recursive problem

Watershed delineation can naturally be posed as a recursive problem where cells can be traversed

in a Depth-First Search (DFS). Here, nodes can be used interchangeably with cells in the context of

DFS where a branch is a single-cell �ow path between two immediate cells and the maximum number

of branches is 7 (not 8 because sink cells are not usually considered and are pre-�lled for watershed

delineation). Intuitively, it is easier to understand this algorithm if it is written recursively. Let's

denote the eight D8 �ow directions as NW (northwest), N (north), NE (northeast), W (west),

E (east), SW (southwest), S (south), and SE (southeast). We can de�ne a set W of cells for a

watershed for outlet point O as

W = {wi | wi → O, i ∈ {NW,N,NE,W,E, SW, S, SE } } (1)

where → indicates the left subwatershed is one cell away from and �ows into the right cell, and wi

is an immediate upstream subwatershed from direction i, which can be de�ned as

wi = {wj | wj → Oi, j ∈ {NW,N,NE,W,E, SW, S, SE } } (2)

where Oi is the outlet of wi and wj is an immediate upstream subwatershed from direction j, which

can recursively be de�ned again using the same set notation. This recursion stops when wz = ∅
where z indicates the deepest recursion level on a �ow path. Many researchers have avoided recursive

algorithms because they are prone to a stack over�ow issue (Kotyra, 2023) if z becomes too large

for a �xed size of the call stack supported by the compiler. MESHED is a recursive algorithm, but it

uses tail recursion and an explicit stack instead of a call stack to avoid stack over�ow problems when

the problem becomes larger than the size of the call stack. Tail recursion can be optimized away by

the compiler's tail-call optimization (e.g., GCC's -foptimize-sibling-calls option) to protect

the call stack from an over�ow. However, it is not strictly required for the proposed algorithm

because it is straightforward to rewrite tail recursion as a while loop if needed (e.g., if the compiler

does not support tail-call optimization) as shown in Cho (2023). In fact, tail-call optimization does

translate a tail recursion into a loop in machine code.
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Table 1

Statistics on the NIDP.

NIDP Texas (%) CONUS (%)

0 26.4 29.9
1 54.6 49.4
2 13.7 14.0
3 3.8 4.7
4 1.2 1.5
5 0.4 0.5
6 0.0 0.0
7 0.0 0.0

3.2. Reduced backtracking as a memory and compute-time saving strategy

The Number of Input Drainage Paths (NIDP) is the count of immediate upstream cells �owing

into the current cell and used in some �ow accumulation algorithms such as High-Performance

Flow Accumulation (Kotyra et al., 2021), ParallelFlowAccum (Barnes, 2017), and FastFlow (Zhou

et al., 2019) although its use was completely eliminated in Memory-E�cient Flow Accumulation

(MEFA) (Cho, 2023). My preliminary statistical analysis on the NIDP shows that cells with only

one upstream neighbor are predominant as shown in Table 1. Based on these results, I realized

that node traversal in DFS does not have to revisit those cells with an NIDP value of 1 once

they are discovered because there are no branches and only one unique upstream path has already

been recorded. I have made a change to the traditional DFS algorithm such that it skips these

single-NIDP cells in the explicit stack to save memory and computational time. Call-stack-based

recursive DFS algorithms cannot implement this node skipping method because stack unwinding

(removing function call entries from the call stack) must be done at all previously visited nodes.

DFS with node-skipping is named Node-Skipping Depth-First Search (NSDFS) and illustrated in

Figure 1.

Figure 1a shows 25 cells with their IDs in a subgrid of the Texas �ow direction matrix bounded

by north 989,607m, south 989,458m, west =380,045m, and east =379,882m in the EPSG:5070

CONUS Albers Equal-Area projection in a 30m resolution. The blue arrows indicate �ow directions

and the red cell is the outlet. The green and yellow cells have an NIDP of 0 (headwater cells) and 1

(single-branch cells), respectively, as shown in Figure 1b. Figure 1c shows the order of cell discovery

assuming that the gray cells do not belong to the watershed for the outlet for illustration purposes.

For each cell, its eight immediately surrounding cells are checked whether or not they �ow into the

current cell. The order of checks is NW, N, NE, W, E, SW, S, and E although no speci�c order is

strictly required. For example, at cell 24 (the outlet in Figure 1a), cell 18 (NW) is discovered �rst.

Without knowing cell 19 is the next immediate branch of cell 24, the search continues to discover

cell 12, the NW branch of cell 18, and so on. The search could have saved all immediate branch

cells 18 and 19 �rst in the explicit stack, but it would require more memory in the stack. From cell

12, its only branch cell 11 is discovered, which is the headwater or terminal cell in that �ow path
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because its NIDP is 0 (i.e., no more upstream cells). The traversal relationships among cells 24, 18,

12, and 11 are depicted in Figure 1d along the left-most node-branch path.

The most important di�erence between traditional DFS and NSDFS is the state of the stack at

this point. DFS would have pushed all nodes 18, 12, and 11 into the stack. However, NSDFS only

pushes those with a NIDP greater than 1 and there will be cells 18 and 11 only; the outlet cell 24

need not be pushed in both cases because it is already known to belong to the watershed. In fact,

both DFS and NSDFS do not need to push the terminal node 11 because they are ready to go back

to the previous node (12 in DFS and 18 in NSDFS) and cell 11 will immediately be popped from

the stack. Popping one node from the stack would give DFS cell 12 resulting in path a′1 while doing

the same will give NSDFS cell 18 resulting in path a, skipping cell 12 or completing paths a′1 and

a′2 in one step. For DFS to complete path a, it would need to push and pop cells 12 (for path a′1)

and 18 (for path a′2) into and from the stack, requiring double the memory of NSDFS. When there

are no single-branch cells between two remote nodes like in the path from cell 7 through 19, both

DFS and NSDFS take the identical paths b1 and b2 (or b
′
1 and b

′
2). Based on Table 1, NSDFS can

save about 50% stack memory compared to DFS because statistically around 50% of cells have no

more than one in�owing neighbor cell (an NIDP of 1).

3.3. Self-destructive �ow direction matrix

Do we need both input and output data all the time during the watershed delineation process?

If we can somehow use just one data store for both input �ow direction and output watershed cells,

we do not need all that 5N B. The new MESHED algorithm does not have two distinctive data

stores for the input and output. Instead, it uses one matrix that is large enough to contain the

watershed output, and starts with the �ow direction input. MESHED destroys information in the

input �ow direction matrix as it discovers new output watershed cells. The key idea is that once a

new watershed cell is discovered and assigned a watershed ID, information from its corresponding

�ow direction cell is not needed anymore. In this case, we can simply overwrite that �ow direction

cell with the watershed ID and move to the next cell.

Figure 2 shows how this self-destructiveness works using the same subgrid from Figure 1.

Initially, when the algorithm starts, it already knows that the outlet cell 24 belongs to the watershed

so it labels the cell with the watershed ID w. When any cell is labeled with its watershed ID, its

�ow direction value is lost and the search can no longer use the �ow direction information in that

cell. The search does not need to know where each outlet cell �ows out because all we care is the

upstream side of the outlet cell, so overwriting the �ow direction of this cell is not an issue. In Figure

2a, the �rst discovered cell 18 is labeled as w losing its �ow direction value. The next discovered cell

12 is labeled in the same way in Figure 2b. Finally in Figure 2c, the search has found a headwater

cell 11 and labeled it. Popping cell 18 from the stack, the search can go back to cell 18 and look for

the next in�owing neighbor cell that is �agged as �not-done� (see Subsection 3.4 about this status

�ag). That next cell is 17 and labeled in Figure 2d and the same process is repeated in Figures 2e

and 2f.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(a) Cell IDs.

3 0 1 1 1

3 3 2 0 1

0 1 2 2 0

0 1 2 4 0

1 0 0 2 0

(b) NIDP matrix.

9 10 13 14 18

11 8 12 16 17

3 2 7 15 19

5 4 1 6 20

aa

b1b1

b2b2

(c) Order of cell discovery. For illustra-
tion purposes, gray cells are assumed to
not belong to the watershed that will be
discovered for the outlet. Red paths a,
b1, and b2 are as shown in Figure 1d.

24

19

201514

10

5

...

9

13

8

4

...

3

...

7

6

...

21

...

18

17

16

12

11
a′1

a′2
a b′1

b′2

b1

b2

Child trees outside the grid

(d) Cell visits in DFS vs. NSDFS. Numbers are cell IDs. Red paths a, b1, and
b2 show examples of popping cells from the stack to return to the last node
with more child nodes to visit in NSDFS. Black paths a′

1, a
′
2, b

′
1, and b′2 show

the same examples, but in DFS without node skipping.

Figure 1: Illustration of NSDFS. Blue arrows indicate �ow directions and the red cell is the outlet cell. Green
and yellow cells have an NIDP of 0 and 1, respectively.

3.4. �Not-done� status bit

In a DFS algorithm, we need to label discovered nodes so that the search does not repeat

tracing previously visited paths from a node with multiple child ones. For watershed delineation,

algorithms can use the output watershed ID matrix for labeling, but MESHED cannot do that

because the �ow direction (uint8_t) and watershed ID (uint32_t) matrices are combined into

the union of both data types (uint32_t), and there is no separate store for watershed IDs. The
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9 10 13 14 18

11 8 12 16 17

3 2 7 15 19
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6 20

w

(a) Discovery order 1.

9 10 13 14 18

11 8 12 16 17

3
w

7 15 19

5 4
w

6 20

w

(b) Discovery order 2.

9 10 13 14 18

11 8 12 16 17

w w
7 15 19

5 4
w

6 20

w

(c) Discovery order 3.

9 10 13 14 18

11 8 12 16 17

w w
7 15 19

5
w w

6 20

w

(d) Discovery order 4.

9 10 13 14 18

11 8 12 16 17

w w
7 15 19

w w w
6 20

w

(e) Discovery order 5.

9 10 13 14 18

11 8 12 16 17

w w
7 15 19

w w w w
20

w

(f) Discovery order 6.

Figure 2: Illustration of self-destructiveness. Numbers indicate the discovery order of each cell from Figure 1c.
w is the watershed ID for the outlet. See Figure 1a for cell IDs.

new algorithm dedicates the Most Signi�cant Bit (MSB, the left-most bit or bit 31) in the shared

matrix as the �not-done� status bit for discovery labeling. This �not-done� status bit is important

to avoid retracing up already visited cells when the tracing head comes back to a visited cell with

multiple upstream neighbor cells. Because of this status bit, the maximum number of watersheds

that the algorithm can support is reduced by half from 232 − 1 = 4,294,967,295 (4.3 billion) to

231 − 1 = 2,147,483,647 (2.1 billion).

Figure 3 shows how the �not-done� status bit works. The structure of a 32-bit uint32_t cell is

shown in Figure 3a. When a �ow direction value of SE (21) is read in for cell 18, its byte structure

looks like Figure 3b (binary representation of 21). In the next step, its MSB is set to indicate

�not-done� as shown in Figure 3c. MESHED initially �ags all �ow direction cells as �not-done� and,

as it discovers new cells, it overwrites their entire 32 bits simply by assigning a watershed ID w to

them. This assignment clears the �not-done� bit automatically and switches the information stored

in the cell from a �ow direction to a watershed ID. Figure 3d shows the �nal state of cell 18 given

its watershed w = 315 for example.
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MSB (bit 31), �not-done� status bit

LSB (bit 0)

Flow direction bits

Watershed ID bits

(a) Structure of a 32-bit cell. LSB 0 bit numbering is used where 0 starts from LSB and grows in the direction of MSB.

ESESSWWNWNNE

1

(b) Cell 18 with �ow direction SE.

Not done
ESESSWWNWNNE

1 1

(c) Cell 18 with �ow direction SE and the �not-done� status.

Done

1 1 1 1 1 1

(d) Cell 18 with watershed ID w = 315.

Figure 3: How the �not-done� status bit works. Clear bits indicate 0.

3.5. Memory-e�cient watershed delineation (MESHED)

Algorithms 1 and 2 assemble all these memory-e�cient techniques into a parallel recursive

NSDFS algorithm, MESHED. This algorithm does not use any intermediate matrix of size N .

So far, I have not discussed much about parallelization because MESHED is an �embarrassingly

parallel� (Herlihy and Shavit, 2012) (little or no e�ort is needed to parallelize a problem) algorithm

using OpenMP. Because the algorithm does not trace up across outlet cells, watersheds cannot

overlap and cells from di�erent watersheds have no interactions at all. For this reason, MESHED

parallelizes watershed delineation per outlet or watershed. In other words, the algorithm is designed

for a large number of watersheds to take advantage of parallelization e�ciency.

3.6. Benchmark and performance experiments

I conducted three experiments:

1. benchmark experiment using Texas data: delineating up to 1000 random watersheds in Texas

for benchmarking MESHED against GageWatershed and WDG,

2. MESHED performance experiment using CONUS data: delineating up to 100,000 random

watersheds in the CONUS to measure the performance of MESHED, and

3. the worst-case experiment for both Texas and the CONUS where the entire DEM is delineated

using edge cells as outlets.
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Require: FDR ▷ Binary-encoded �ow direction matrix in 4-byte signed integer
Require: O ▷ Set of outlet points in row and column
Require: W ▷ Set of watershed IDs
1: (R,C)← Numbers of rows and columns of FDR, respectively
2: parfor r ← 1 to R ▷ OpenMP parallel for loop
3: for c← 1 to C do

4: FDRrc ← FDRrc ∨̇ 231 ▷ Turn on the not-done bit using the MSB
5: end for

6: end parfor

7: parfor i← 1 to |O| ▷ OpenMP parallel for loop
8: (r, c)← Oi ▷ Row and column of outlet point i
9: FDRrc ←Wi ▷ Assign a watershed ID to the cell; the not-done bit is cleared
10: end parfor

11: parfor i← 1 to |O| ▷ OpenMP parallel for loop
12: (r, c)← Oi ▷ Row and column of outlet point i
13: w ←Wi ▷ Watershed ID
14: STACK← New stack
15: TraceUp(FDR, r, c, w, STACK)
16: Delete STACK
17: end parfor

18: parfor r ← 1 to R ▷ OpenMP parallel for loop
19: for c← 1 to C do

20: if FDRrc ∧̇ 231 ̸= 0 then FDRrc ← Null ▷ Nullify undiscovered cells
21: end for

22: end parfor

Algorithm 1: Pseudocode for the proposed MESHED algorithm. ∨̇ and ∧̇ are the bitwise OR and
AND operators, respectively.

The �rst experiment was needed for performance comparisons because none of those benchmark

algorithms was able to solve the CONUS-scale problem. For the second experiment, I chose 100,000

watersheds because there are 91,856 dams in the United States according to the National Inventory

of Dams (NID) by U.S. Army Corps of Engineers (2024). In the worst-case experiment, all edge cells

draining away from the DEM were selected as outlets for watershed delineation across the entire

DEM. This experiment includes the largest watershed in the DEM. There were 60,993 and 515,152

outlets in the Texas and CONUS DEMs, respectively.

Table 2 shows the system speci�cations used for the experiments. The Linux system has 64GiB

of RAM, 24 threads (logical processors) for OpenMP (MESHED and WDG), and 16 processors

(cores) for MPI (GageWatershed). Its GPU has 3328 CUDA cores and 12GiB of VRAM for WDG.

I compiled MESHED, GageWatershed, and WDG using the GCC C compiler, Open MPI C++

compiler, and CUDA compiler, respectively. For data input and output (I/O), the Geospatial Data

Abstraction Library (GDAL) was used for all the algorithms.

Table 3 summarizes the four algorithms used for this study. For a 4-byte integer type (S = 4),

MESHED uses 20.0%, 50.0%, 20.0% less memory compared to MESHEDm, GageWatershed, and

WDG, respectively. If we were to optimize GageWatershed by using only a 1-byte integer type for

two of its matrices, that would decrease its memory usage to 10.2GiB (1.5 times MESHED). If we
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1: function TraceUp(FDR, r, c, w, STACK)
2: DIR←

{ {
21, 22, 23

}
,
{
20, 0, 24

}
,
{
27, 26, 25

} }
▷ Binary-encoded reverse �ow directions

3: ▷ { { SE,S, SW } , { E, 0,W } , {NE,N,NW } }
4: (R,C)← Numbers of rows and columns of FDR, respectively
5: u← 0 ▷ Number of upstream cells
6: for i← −1 to 1 do

7: if r + i /∈ [1, R] then continue ▷ Continue to next i if r + i is not within FDR
8: for j ← −1 to 1 do

9: if c+ j /∈ [1, C] then continue ▷ Continue to next j if c+ j is not within FDR
10: if FDRr+i,c+j ∧̇ ¬̇ 231 = DIRi+2,j+2 and FDRr+i,c+j ∧̇ 231 ̸= 0 then

11: ▷ If we found a new upstream cell
12: u← u+ 1
13: if u = 1 then

14: (r′, c′)← (r + i, c+ j) ▷ Next cell for tracing
15: FDRr′c′ ← w
16: ▷ Assign the watershed ID to the cell; the not-done bit is cleared
17: else ▷ More than one upstream cells are found
18: break ▷ Break out of the inner for loop
19: end if

20: end if

21: end for

22: if u > 1 then break ▷ Break out of the outer for loop
23: end for

24: if u = 0 then ▷ If we reached a ridge cell
25: if STACK = ∅ then return ▷ No more cells to trace
26: (r′, c′)← Pop from STACK ▷ Trace another branch
27: else if u > 1 then ▷ If we found multiple branches
28: Push (r, c) to STACK ▷ We will come back to this cell
29: end if

30: TraceUp(FDR, r′, c′, w, STACK) ▷ Tail recursion for tail-call optimization
31: end function

Algorithm 2: Pseudocode for the TraceUp function. ¬̇ is the bitwise NOT operator.

modi�ed WDG so that it could identify more than 254 watersheds, its memory usage would increase

to 13.6GiB (2 times MESHED). Because WDG is a GPU algorithm and uses a di�erent computing

architecture than the CPU, its performance cannot directly and fairly be compared with those of

the other two algorithms. Therefore, benchmarking against WDG was made only for references

between two di�erent speci�c processing units, Intel i9-12900 and NVIDIA RTX A2000.

More-memory version of MESHED (MESHEDm) I have implemented a more-memory version of

MESHED called MESHEDm to see the impact of bitwise operations for �not-done� status �agging. In

this version, a separate uint8_t matrix is created for discovery labeling, so the memory requirement

of MESHEDm is 5N B (compared to 4N B for MESHED) and the maximum number of watersheds

is 232 − 1 = 4,294,967,295 (4.3 billion doubled from MESHED) because there is no bit reserved for

the �not-done� status. MESHEDm was only used for the �rst benchmark experiment because the

CONUS problem has N = 14,998,630,400 and the total memory required becomes 69.8GiB, which

is larger than the system memory of 64GiB.
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Table 2

System speci�cations.

Item Description

CPU Intel® Core� i9-12900 @ 2.40GHz
Cores 16
Logical processors 24
Memory 64GiB
System architecture 64-bit x86_64
Operating system Linux kernel version 5.15.94
OpenMP Compiler GNU Compiler Collection (GCC) version 11.2.0
GeoTIFF/Shape�le library Geospatial Data Abstraction Library (GDAL) version 3.6.4 C API
MPI compiler Open MPI version 4.1.4
GPU NVIDIA RTX A2000
GPU cores 3328 CUDA cores
GPU memory 12GiB
GPU driver NVIDIA driver version 530.30.02
GPU compiler CUDA version 12.1

Table 3

Algorithms used for the benchmark experiment. M(S,N): Estimated minimum memory required for the input,
output, and major intermediate matrices only. S: Size of data type for watershed IDs. N : Number of input cells.
∗: OpenMP is used for pre-/post-processing and full CUDA cores are used at all times. †: The number of columns

C is approximated as
√
N . GageWatershed could be reimplemented to use (S+ 2)

(
N+ 2

√
N
)
B (10.2 GiB for

Texas). ‡: Only GPU memory for computing is considered. WDG would need to be rewritten to use a 4-byte integer
transfer array to support more than 255 watersheds and it would require (S+ 4)NB in that case (13.6 GiB for
Texas).

Algorithm Computing M(S,N) M(S,N) for Texas (GiB) Reference

MESHED OpenMP SN 6.8 This study
MESHEDm OpenMP (S + 1)N 8.5 This study

GageWatershed MPI (S + 4)
(
N + 2

√
N
)
† 13.6 Tarboton (2010)

WDG CUDA∗ (S + 1)N‡ 8.5 Kotyra (2023)

Flow direction matrices I used the m.tnm.download module in the Geographic Resources Analysis

Support System (GRASS) GIS (Neteler et al., 2012) to download the 1′′ NED for Texas and the

CONUS. This unprojected Digital Elevation Model (DEM) was reprojected to the EPSG:5070

CONUS Albers Equal-Area projection in a 30m resolution. For Texas and the CONUS, the

total numbers of cells including null are 1,825,884,762 (1.8 billion) and 14,998,630,400 (15 billion)

respectively, and the numbers of non-null cells are 772,957,282 (42%) and 8,988,260,806 (60%),

respectively. The r.watershed (Ehlschlaeger, 1989) and r.mapcalc modules were used to calculate

Single Flow Direction (SFD) matrices in a binary encoding (20 for east clockwise to 27 for northeast)

for MESHED and WDG, and in a decimal encoding (1 for east counterclockwise to 8 for southeast)

for GageWatershed. These �ow direction matrices were exported to GeoTIFF �les using the

r.out.gdal module and used as input to the algorithms.
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Random outlet points For unbiased testing, I generated 28 and 46 sets of up to 1000 and 100,000

random outlet points for Texas and the CONUS, respectively. I �rst created the vector stream

network S using the r.accumulate module (Cho, 2020) to ensure that the minimum size of any

watershed was at least 90 km2 and all outlets were properly snapped to stream lines. Each set of

outlets O(i) for both Texas (i = 1, · · · , 28) and the CONUS (i = 1, · · · , 46) can be de�ned as

O(i) = { (xj , yj) | xj = R(xw, xe), yj = R(ys, yn), (xj , yj) ∈ S, j = 1, · · · , N(i) } (3)

where xw, xe, ys, and yn are the west, east, south, and north bounds of the �ow direction matrix,

respectively, R(m,M) is a pseudo random number generator that is initialized by seed N(i) for each

set O(i) and returns a pseudo random real number between m and M , and N(i) is the number of

outlets in the set de�ned by N(i) = |O(i)| =
(
i− 9

⌊
i−2
9

⌋)
10⌊

i−2
9 ⌋. Figure 4 shows the number of

outlets in O(i) for di�erent i values. The r.random module was used to generate these outlet point

sets O(i) for Texas (i = 1, · · · , 28) and the CONUS (i = 1, · · · , 46), and each O(i) was exported to

a Shape�le using the v.out.ogr module.

1 10 19 28 37 46
100

101

102

103

104

105

Texas

CONUS

i

n
(i
)

Figure 4: Number of outlets in O(i). i is the number for an outlet set and n(i) is the number of outlets in set
i. O(i) indicates the actual set containing those n(i) outlets.

Trials I tried 24 di�erent numbers of threads from 1 up to 24 because the CPU has 24 threads. For

GageWatershed, it was 1�16 processes because MPI uses cores as processes rather than threads.

All three algorithms were run for each number of threads (or processes for GageWatershed) 30

times independently for each of 28 outlet sets. Table 4 summarizes a total number of 73,920 runs.

I averaged all experimental results over the 30 trials.

Performance measures In these experiments, only the compute time for actual watershed delin-

eation was measured and the data I/O time was not considered because reading and writing data is

not part of an algorithm. Relative di�erences in compute time between algorithms were calculated
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Table 4

Summary of algorithm runs for the benchmark experiment. ∗: Number of cores.

Method Number of outlet sets Number of threads Trials Total runs

MESHED 28 24 30 20,160
MESHEDm 28 24 30 20,160
GageWatershed 28 16∗ 30 13,440
WDG 28 24 30 20,160

using the percentage change:

∆T % =
Tslower − Tfaster

Tslower
× 100% (4)

where Tslower and Tfaster refer to the compute times of slower and faster algorithms, respectively.

Scaling tests In addition, I present both strong and weak scaling performance analysis of all the

algorithms. The problem size remains constant with an increasing number of processes in strong

scaling while it linearly grows in proportion to the number of processes in weak scaling. Figure 5

shows grouped pairs of the numbers of threads and outlets for all three weak scaling tests and four

strong scaling tests among 28. Parallel performance can be measured using the speedup function in

a strong scaling test

ψ(P ) =
T (1)

T (P )
(5)

and the e�ciency function in a weak scaling test

ϵ(P ) =
ψ(P )

P
(6)

where P is the number of processes (threads for MESHEDm and MESHED, and cores for

GageWatershed), and T (1) and T (P ) are the compute times using 1 and P processes, respectively.

In the case of WDG, I varied the number of threads for this GPU algorithm, but they were mostly

used for data pre- and post-processing, and actual computation was done by all 3328 CUDA cores.

Worst-case experiment For this experiment, the r.mapcalc module was used to extract all edge cells

draining away from the DEM. These raster cells were converted to vector points using the r.to.vect

module. For Texas, all the four algorithms (MESHED, MESHEDm, GageWatershed, and WDG)

were run 30 times for each number of threads 1�24 (or 1�16 processes for GageWatershed). For

the CONUS, only MESHED was repeated. This experiment is di�erent from the others in that all

watersheds are complete with no upstream-downstream relationship within the DEM extent. All

watersheds including the largest one are delineated across the entire DEM.
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Figure 5: Scaling tests. The pairs in gray are used for weak scaling tests because the number of threads (processes)
increases linearly in proportion to that of outlets (problem size).

4. Results and discussion

4.1. Benchmark results of the Texas experiment

For eight watersheds, �ve runs of GageWatershed (5�9 threads for trial 15) failed within 5 s

without any apparent error messages, so they were not included in this analysis. All the results

from MESHED, MESHEDm, and GageWatershed were identical. However, as we already reviewed

in Section 2, because WDG uses a 1-byte unsigned integer transfer array to store watershed IDs, its

results were identical only for 1�200 watersheds. For any cases with a larger number of watersheds

than 200, it successfully delineated watershed shapes, but their IDs were recycled between 1 and

254 (the minimum ID was 1 and 255 was used for null) because of integer over�ows.

Table 5 shows the average compute times of all runs for each algorithm for Texas. On average,

MESHEDm was the fastest followed by MESHED, WDG, and GageWatershed. MESHEDm was

17.1%, 92.8%, and 18.1% faster than MESHED, GageWatershed, and WDG, respectively, while

the less memory version MESHED was 91.3% and 1.1% faster than GageWatershed and WDG,

respectively. These performance gaps grew as they delineated more watersheds. For 1000 watersheds,

MESHED performed 95.5% and 20.8% faster than GageWatershed and WDG, respectively.

In Figure 6a, we can see that the compute time of MESHED and MESHEDm improved the fastest

as the number of threads increased in the case of 1000 watersheds. WDG was the least sensitive

to the number of threads. Similarly, as can be seen in Figure 6b, WDG performed consistently

regardless of the number of watersheds. This consistent performance of WDG is because it uses all

CUDA cores for major computation and always visits all the cells, not just those in watersheds.
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Table 5

Compute times for Texas averaged over all runs for each algorithm. ∗: Using 24 threads (16 processes for
GageWatershed).

Method Compute time (s)
Compute time

for 1000 watersheds∗ (s)

MESHED 1.76 1.16
MESHEDm 1.46 0.95
GageWatershed 20.13 25.86
WDG 1.78 1.47

The other three algorithms showed similar patterns in parallel, but MESHED and MESHEDm were

consistently faster than GageWatershed.
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(a) Compute times for 1000 watersheds in Texas.
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(b) Compute times for Texas using full 24 threads (16
processes for GageWatershed).

Figure 6: Compute times for Texas.

Figure 7 presents the results of the strong scaling test. In the cases of one and 10 watersheds,

GageWatershed scaled the best and the other three algorithms did not scale well as shown in Figures

7a and 7b. However, its speedup dropped at nine processes after which it could not recover the peak

speedup. For 100 watersheds, MESHED and MESHEDm started outperforming GageWatershed

from six threads. For 1000 watersheds, MESHEDm scaled the best with a speedup of 9.25 followed

by MESHED with a speedup of 8.20. WDG did not scale well in all the test runs because, again, it

uses all CUDA cores for actual computation.

The weak scaling test results are shown in Figure 8. For 1�10 watersheds, GageWatershed

was the most e�cient in weak scaling over di�erent numbers of threads and processes while the

other three algorithms had a similar e�ciency trend as shown in Figure 8a. With an increasing

number of watersheds, however, Figure 8b shows that MESHED and MESHEDm improved their

scaling e�ciency better than the other algorithms. For 100�1000 watersheds, MESHED and
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(b) Strong scaling speedup for 10 watersheds in Texas.
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(c) Strong scaling speedup for 100 watersheds in Texas.
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(d) Strong scaling speedup for 1000 watersheds in Texas.

Figure 7: Strong scaling speedup results for Texas.

MESHEDm maintained weak scaling e�ciencies of 0.60 and 0.67 with 10 threads, respectively,

while GageWatershed and WDG stayed below 0.60 at 0.33 and 0.20 with the same number of

processes and threads, respectively.

Figure 9 does not strictly show the results of the strong and weak scaling tests because both

speedup and e�ciency are plotted against the number of watersheds for a �xed number of threads

and processes. However, we can better observe the above pattern of the improving performance of

MESHED and MESHEDm as the number of watersheds increases. Initially, GageWatershed was

better than the other algorithms in terms of speedup and e�ciency until 30 and 40 watersheds,

respectively. MESHED and MESHEDm started outperforming GageWatershed starting from 40

watersheds in speedup and 50 in e�ciency, and both scaling measures consistently grew except at

four drops with 60, 70, 100, and 600 watersheds.
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(a) Weak scaling e�ciency for 1�10 watersheds in Texas.
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(b) Weak scaling e�ciency for 10�100 watersheds in Texas.
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(c) Weak scaling e�ciency for 100�1000 watersheds in
Texas.

Figure 8: Weak scaling e�ciency results for Texas. The problem size grew linearly with the number of threads.

MESHEDm improved the performance of MESHED by 17.1%, but at the expense of 25.0%

more memory consumption. As already presented in Table 3 and explained in Section 3, to

produce identical results, the minimum memory requirements for data stores of size N are 6.8GiB,

8.5GiB, 10.2GiB, and 13.6GiB, respectively, for MESHED, MESHEDm, GageWatershed, and

WDG. MESHED uses 33% and 50% less memory than GageWatershed and WDG, respectively.

In terms of data size, MESHED can process approximately 50% and 100% larger data than

GageWatershed and WDG, respectively.

The parallelization technique in the proposed algorithm was speci�cally designed for a large

number of watersheds. For this reason, in some use cases where the user only wants to delineate a

few watersheds less than the number of threads, it may not scale well (see Subsection 4.4 for more
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Figure 9: Speedup and e�ciency results for di�erent numbers of watersheds in Texas.

detail). However, taking the extreme case of just one watershed, MESHED and MESHEDm still

performed better than GageWatershed and WDG as shown in Figure 6b (100 on the x-axis).

Heaptrack was used to pro�le total memory consumption. The peak Resident Set Size (RSS)�

memory space occupied by a process�of both MESHED and MESHEDm was 9.2GiB. The raster

I/O function and GDAL used 7.3GiB and 1.8GiB, respectively, totaling 9.2GiB in both cases.

MESHED was expected to use less memory, but its peak memory consumption was the same as

MESHEDm because reading in the input data required the same additional memory overhead by

GDAL, which was greater than the saved memory by the less-memory version. However, once the

data is read into the memory, the RSS dropped when the actual algorithm of MESHED started

working. The peak RSSs of GageWatershed and WDG were 16.5GiB and 5.6GiB, respectively.

WDG was not modi�ed for more than 254 watersheds, so except for this algorithm, these measured

total memory consumptions were between 108% and 135% of the estimated minimum memory in

Table 3 for the input and output data only.

4.2. Performance results of the CONUS experiment

The average compute time of MESHED in the CONUS experiment was 19.01 s for all 33,120

runs (24 threads, 46 outlet sets, and 30 trials). This algorithm took 13.64 s to delineate 100,000

watersheds using 24 threads. Figure 10 shows its scaling test results where we can see again that

MESHED scales better with a higher number of watersheds than with a lower number. For 100,000

watersheds, MESHED reached a speedup of 9.97 with an e�ciency of 0.66. As presented earlier, its

speedup and e�ciency for 1000 Texas watersheds were 8.20 and 0.60, respectively. With 100 times

more watersheds in the CONUS experiment, the speedup and e�ciency went up by 21.5% and

8.8%, respectively. In other words, the new algorithm was more e�cient with more watersheds.
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Figure 10: Scaling test results for the CONUS. The numbers in the legends indicate how many watersheds were
delineated for each test.

It was impossible to compare its performance with those of MESHEDm and the other benchmark

algorithms because MESHED was the only algorithm that successfully solved the CONUS problem

without using swap memory. Given the number of cells N = 14,998,630,400 and only considering

data stores of size N , MESHEDm, GageWatershed, and WDG require 69.8GiB and 83.8GiB

RAM, and 111.7GiB VRAM, respectively, at a minimum. We also need to consider that the

current maximum size of VRAM on the consumer market is 80GiB, which is smaller than the

required amount of WDG. For the same problem, MESHED requires a minimum RAM of 55.9GiB,

making it possible to solve problems that are approximately 50% and 100% larger than what

GageWatershed and WDG, respectively, can handle. The peak RSSs of MESHED and MESHEDm

measured by Heaptrack were 66.9GiB and 72.6GiB, respectively. Unlike in the Texas experiment,

additional memory required by MESHEDm was greater than the GDAL overhead and the peak

RSS of MESHEDm was higher than that of MESHED.

4.3. Worst-case results

Figures 11 and 12 show the results of the worst-case experiment. For 60,993 watersheds in

Texas, WDG delineated only 74.7% of the entire Texas area, so it was not included in this section.

The maximum speedup of MESHED, MESHEDm, and GageWatershed was 2.00, 2.00, and 2.22,

respectively. MESHED was in fact the worst and GageWatershed was the best, but all the algorithms

achieved a similar speedup and the di�erence was not signi�cant with a coe�cient of variation of

0.06. Unlike the other algorithms, GageWatershed peaked its performance using �ve processes, not

16, and it started deteriorating after that. For 515,152 watersheds in the CONUS (8.4 times more

watersheds than Texas), the speedup of MESHED was 2.18, slightly better than 2.00 in the Texas

case. Overall, with an increasing number of threads or processes, no algorithms were particularly
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performant in delineating all watersheds across the entire DEM and they all scaled poorly in this

worst-case experiment.
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Figure 11: Worst-case results for 60,993 watersheds across the entire Texas.
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Figure 12: Worst-case results using MESHED for 515,152 watersheds across the entire CONUS.

4.4. Limitations

The proposed algorithm has two known limitations: (1) some threads can become idle towards

the end of the algorithm while remaining watersheds are being delineated by others and (2) no
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subsequent analysis using �ow directions can be done after or with watershed delineation because

the �ow direction input is lost. To alleviate the �rst limitation, the algorithm uses the dynamic

scheduling policy of OpenMP instead of its default static scheduling for better load balancing.

However, if a large watershed belongs to the last group of threads, it can be a performance bottleneck

because the algorithm must wait for just one thread to �nish its delineation. As for the second

limitation, the algorithm was designed to be able to delineate a large number of watersheds using

a limited amount of memory, so it is an inherent drawback. Other analyses using �ow directions

can be done �rst before watershed delineation, but it is also acknowledged that this strategy is not

always possible.

This algorithm does not require a tiling scheme that splits input and output data into smaller

tiles because it uses multiple threads in one CPU that share the entire computer memory. As

a result, it is not scalable beyond one computer. The focus of the current study is to maximize

the memory usage and multi-threaded parallel performance of one CPU using OpenMP because

tiling-based MPI algorithms like GageWatershed, when used with one CPU, incur overheads for

inter-process communication for information exchange among tiles. For this reason, a tiling scheme

does not apply to the proposed algorithm and it is my future work to hybridize OpenMP and MPI

to fully take advantage of both multi-threaded and multi-node parallelization techniques using an

e�cient tiling scheme.

5. Conclusions

I introduced the Memory-E�cient Watershed Delineation (MESHED) algorithm for delineating

tens of thousands of watersheds for a CONUS-scale study using a D8 �ow direction matrix with

dozens of billions of cells. It uses a node-skipping depth-�rst search to save explicit stack memory

based on NIDP statistics. A shared data store for both �ow directions and watershed IDs further

reduces its memory requirements. This algorithm is parallelized per watershed using OpenMP, so

it is suitable for a larger number of watersheds. MESHED was 95% and 21% faster using 33%

and 50% less memory than the CPU-based GageWatershed and GPU-based WDG benchmark

algorithms, respectively, with 1000 random watersheds in Texas. It achieved a speedup of 8.20 and

an e�ciency of 0.60 in the same experiment. I used it successfully to delineate 100,000 random

watersheds in the CONUS in 13.64 s using 55.9GiB and 24 threads on an i9-12900 CPU, but none

of the benchmark algorithms worked because they failed to allocate enough memory for both input

and output data. Given the same amount of memory, MESHED can solve approximately 50% and

100% larger problems than GageWatershed and WDG, respectively, can. Unlike tiling-based MPI

algorithms like GageWatershed, the proposed algorithm does not require a tiling scheme because

all threads share the same computer memory all the time without incurring overheads for inter-

process communication. It would still be an important improvement to hybridize OpenMP and MPI

techniques using an e�cient tiling scheme, as one reviewer of this paper suggested, to extend the

scalability of this algorithm beyond one node.
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A. Pseudocode for the benchmark algorithms

Require: O ▷ Set of outlet points in row and column
Require: W ▷ Set of watershed IDs
Require: P ▷ Number of processors
1: (R,C)← Numbers of rows and columns of the entire �ow direction matrix, respectively
2: M ← ⌈R/P ⌉+ 2 ▷ Partitioned number of rows; 2 for top and bottom borders
3: if the process is the root then
4: Broadcast O and W to all other processes
5: else

6: Receive O and W from the root process
7: end if

8: FDR← Read a partitioned M × C �ow direction matrix ▷ In 2-byte signed integer
9: WSHED← New partitioned M × C watershed matrix ▷ In 4-byte signed integer
10: Q← ∅ ▷ Create a queue
11: for each Oi inside the partition do ▷ Ignore outlets outside the partition
12: WSHEDi ←Wi ▷ Assign its watershed ID at the outlet cell
13: Enqueue i to Q ▷ Store the location of the outlet
14: end for

15: NBR← New partitioned M × C neighbor matrix ▷ In 2-byte signed integer
16: for each cell i in NBR do

17: if FDRi is null then NBRi ← Null else NBRi ← 1
18: end for

19: repeat

20: while Q ̸= ∅ do
21: Dequeue i from Q ▷ Read the location of a cell in the queue
22: j ← the immediate downstream cell of i
23: if WSHEDi is not set then WSHEDi ←WSHEDj ▷ Read the downstream watershed ID
24: for each upstream neighbor cell k of cell i do
25: if WSHEDk is not set then
26: NBRk ← NBRk − 1
27: if NBRk = 0 then Enqueue k to Q
28: end if

29: end for

30: end while

31: Exchange the border arrays of WSHED with the neighbor processes
32: Enqueue those border locations with a watershed ID to Q
33: Clear the border arrays of NBR
34: until all processes' Q = ∅ ▷ The algorithm terminates when all process queues are empty

Algorithm A1: Pseudocode for GageWatershed. This algorithm can be run by multiple processes in
parallel. The number of processes P is speci�ed by the user.
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Require: FDR ▷ Binary-encoded �ow direction matrix in 1-byte unsigned integer
Require: OW ▷ Outlet rows and columns in 4-byte signed integer, and labels in 1-byte unsigned integer
1: (R,C)← Numbers of rows and columns of FDR, respectively
2: N ← R× C
3: O′ ← Array of size |OW| ▷ Outlet location array in 4-byte unsigned integer
4: for i← 0 to |O′| − 1 do ▷ 0-based indexing
5: O′

i ← (OWi,row − 1)C +OWi,column − 1
6: end for

7: Og ← CUDA outlet location array of size |O′| ▷ In 4-byte unsigned integer in GPU
8: Copy O′ to Og ▷ Send the outlet location array to GPU
9: W′ ← Array of size |OW| ▷ Outlet label array in 1-byte unsigned integer
10: for i← 0 to |W′| − 1 do ▷ 0-based indexing
11: W′

i ← OWi,label

12: end for

13: Wg ← CUDA outlet label array of size |W′| ▷ In 1-byte unsigned integer in GPU
14: Copy W′ to Wg ▷ Send the outlet label array to GPU
15: T← Array of size N ▷ Transfer array in 1-byte unsigned integer
16: parfor r ← 0 to R− 1 ▷ OpenMP parallel for loop; 0-based indexing
17: for c← 0 to C − 1 do

18: T(r−1)C+c−1 = FDRrc ▷ Flatten FDR
19: end for

20: end parfor

21: Set all outlet cells in T to no-direction
22: Tg ← CUDA transfer array of size N ▷ In 1-byte unsigned integer in GPU
23: Copy T to Tg ▷ Send the transfer array to GPU
24: TGTg ← CUDA target array of size N ▷ In 4-byte unsigned integer in GPU
25: DirectionToTargetKernel(Tg, TGTg, R, C)
26: cg ← CUDA change array of size 1 ▷ In boolean
27: repeat

28: c← False
29: Copy c to cg

30: PathReductionKernel(TGTg, cg)
31: Copy cg0 to c
32: until c = False
33: ClearBasinArrayKernel(Tg)
34: InitializeBasinArrayKernel(Tg, Og, Wg)
35: TargetToBasinKernel(TGTg, Tg)
36: Copy T g to T ▷ Copy out the transfer array from GPU
37: WSHED← New R× C watershed matrix ▷ In 1-byte unsigned integer
38: parfor r ← 0 to R− 1 ▷ OpenMP parallel for loop; 0-based indexing
39: for c← 0 to C − 1 do

40: WSHEDrc = T(r−1)C+c−1 ▷ Un�atten T
41: end for

42: end parfor

Algorithm A2: Pseudocode for WDG.
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1: function DirectionToTargetKernel(Tg, TGTg, R, C)
2: i← blockIdx.x× blockDim.x+ threadIdx.x

3: if i < R× C then

4: r ← ⌊i/C⌋
5: c← i mod C
6: Update (r, c) to its immediate downstream cell
7: if 0 ≤ r < R and 0 ≤ c < C then

8: Tg
i ← r × C + c

9: else

10: Tg
i ← i

11: end if

12: end if

13: end function

Algorithm A3: Pseudocode for the WDG DirectionToTargetKernel CUDA function.

1: function PathReductionKernel(TGTg, cg)
2: i← blockIdx.x× blockDim.x+ threadIdx.x

3: if i < |TGTg| and TGTg
i ̸= TGTg

TGTg
i
then

4: TGTg
i ← TGTg

TGTg
i

5: cg0 ← True ▷ 0-based indexing
6: end if

7: end function

Algorithm A4: Pseudocode for the WDG PathReductionKernel CUDA function.

1: function ClearBasinArrayKernel(Tg)
2: i← blockIdx.x× blockDim.x+ threadIdx.x

3: if i < |Tg| then
4: Tg

i ← Null
5: end if

6: end function

Algorithm A5: Pseudocode for the WDG ClearBasinArrayKernel CUDA function.

1: function InitializeBasinArrayKernel(Tg, Og, Wg)
2: i← blockIdx.x× blockDim.x+ threadIdx.x

3: if i < |Og| then
4: Tg

Og
i
←Wg

i

5: end if

6: end function

Algorithm A6: Pseudocode for the WDG InitializeBasinArrayKernel CUDA function.

1: function TargetToBasinKernel(TGTg, Tg)
2: i← blockIdx.x× blockDim.x+ threadIdx.x

3: if i < |Tg| then
4: Tg

i ← Tg
TGTg

i

5: end if

6: end function

Algorithm A7: Pseudocode for the WDG TargetToBasinKernel CUDA function.
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