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ABSTRACT

This study presents a new OpenMP parallel algorithm for Memory-E�cient
Longest Flow Path (MELFP) computation for large-scale hydrologic anal-
ysis. MELFP hybridizes loop-based and task-based parallelism to improve
load balancing and eliminates intermediate read-write matrices to optimize
memory usage. Its performance remained insensitive to the threshold pa-
rameter for switching from looping to tasking. Compared to the benchmark
algorithm, MELFP achieved a 66% reduction in computation time while
increasing CPU utilization by 33%. Its 79% lower peak memory usage
enables processing larger datasets. These results suggest that MELFP is
a fast and memory-e�cient solution for longest �ow path computations
across a large number of watersheds, particularly in high-performance
computing environments where rapid execution is prioritized over lower CPU
utilization. MELFP's additional ability to compute longest �ow paths for
individual subwatersheds provides added bene�ts for detailed and localized
hydrologic modeling.
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1. Introduction

This study presents a new parallel Memory-E�cient Longest Flow Path (MELFP) algorithm

designed to calculate longest �ow paths for a large number of watersheds using the single �ow

direction (D8) matrix. The longest �ow path is one of important hydrologic parameters necessary for

characterizing watersheds in hydrologic analysis (Huang and Lee, 2016; Kotyra and Chabudzi«ski,

2023). Accurate and e�cient computation of the longest �ow path is fundamental in hydrologic

modeling (Beven and Kirkby, 1979; Arnold et al., 1998; Feldman, 2000; Rossman and Huber, 2016),

hydrograph derivation (Sólyom and Tucker, 2004), assessing the hydrologic response of a watershed

to rainfall events by estimating the time of concentration and lag time (Feldman, 2000; Maidment

and Djokic, 2000; Olivera, 2001; Michailidi et al., 2018; Sultan et al., 2022), and parameterizing

regression equations for annual peak discharge prediction (Gotvald et al., 2009; Feaster et al., 2014;

Williams-Sether, 2015), etc. Recent advances in the quality and quantity of geospatial data highlight

the growing demand for scalable algorithms capable of handling continental-scale domains (Cho,

2023).

Parallel algorithms for computing hydrologic parameters have been proposed in prior studies,

including Barnes (2017); Kotyra et al. (2021); Cho (2023) for �ow accumulation and Tarboton

(2010); Kotyra (2023) for watershed delineation. However, only recently has the e�ciency of

computing the longest �ow path drawn attentions (Cho, 2020; Kotyra and Chabudzi«ski, 2023),

following decades-old works (e.g., Smith, 1995; Olivera and Maidment, 1998; Maidment, 2002),

because of the increasing resolution and growing size of geospatial data (Kotyra and Chabudzi«ski,

2023). Cho (2020) introduced serial recursive and iterative algorithms as a Geographic Resources

Analysis Support System (GRASS) (Neteler et al., 2012) module called r.accumulate. His algorithms

require both �ow direction and �ow accumulation matrices as input, which introduces additional

computational overhead for generating �ow accumulation. In addition, the algorithms must allocate

more memory to load both input matrices before computing the longest �ow path. These increased

demands on computational time and memory make these algorithms less suitable for resource-

constrained environments or large-scale longest �ow path computations.

The most recent and only parallel attempt, to the author's best knowledge, to make this

calculation faster is the work of Kotyra and Chabudzi«ski (2023). They presented four serial and

three parallel algorithms, and compared their performance. The top-down single update and double
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drop parallel algorithms were recommended depending on the needs of the user. The former is

capable of �nding longest �ow paths for multiple watersheds in parallel, but only one for each,

while the latter is more suitable to �nd all possible longest �ow paths for only one watershed.

Since this study focuses on parallel algorithms for a large number of watersheds, we only review the

top-down single update parallel algorithm�hereinafter referred to as the BKotyra Longest Flow

Path (BLFP) algorithm following their GitHub repository name.

The motivation behind this study was to address the challenges for e�cient memory usage and

improved load balancing for recursive parallel computation of the longest �ow path, particularly

when handling large datasets. As datasets continue to expand in size and computational resources

become more constrained, optimizing algorithms for both memory and performance becomes crucial.

The goal was to develop a more e�cient algorithm that reduces memory footprint while maintaining

or improving computational e�ciency. Additionally, the proposed algorithm was developed to

calculate both full and subwatershed-speci�c longest �ow paths. This study o�ers a signi�cant

contribution to the preprocessing stage of large-scale hydrologic modeling by introducing a memory-

e�cient, tail-recursive parallel algorithm that removes the dependence on the �ow accumulation

and intermediate matrices. The improved e�ciency and scalability not only bene�t shared-memory

systems but also provide a foundation for future research into distributed-memory implementations

to support even larger datasets.

To underscore the signi�cance of the proposed algorithm, Section 2 provides a review of

the only existing parallel approach BLFP, including its methodology and memory demands.

Section 3 presents the proposed algorithm and emphasizes its load-balancing approach through

the hybridization of loop-based and task-based OpenMP parallelism, along with its low memory

requirements for large-scale applications. Section 4 discusses benchmark results that demonstrate

the performance of these approaches, and Section 5 concludes the study with a summary of key

�ndings and implications.

2. Review of the benchmark algorithm

Kotyra and Chabudzi«ski (2023) used Open Multi-Processing (OpenMP) (Dagum and Menon,

1998) to parallelize their longest �ow path algorithm for multiple watersheds. Using the same

terminology from their work, source cells are cells with no in�ow neighbors, link cells with only

one in�ow neighbor, and junction cells with multiple in�ow neighbors. Their top-down BLFP

algorithm creates an inlet number matrix (a 1-byte signed integer or int8 per cell) and a path

matrix (two 4-byte signed integers or two int32s per cell), and calculates the inlet number matrix

in parallel, where source cells are assigned −1, link cells −2, and junction cells the number of in�ow

neighbors. This matrix is similar to the Number of Input Drainage Paths (NIDP) matrix (Cho,

2023) except that source and link cells store special negative values. Now from each source cell in

parallel, a thread traverses down the D8 �ow direction matrix, counting and storing the numbers

of straight and diagonal cell moves into the source cell in the path matrix (two int32s for straight
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and diagonal counts). If the current cell is a link cell (i.e., a single in�ow path), the original source

cell location is written in the current cell in the path matrix (two int32s for row and column) and

the next downstream cell is visited. Otherwise, the inlet number of the current cell is atomically

decremented in the inlet number matrix. If the decremented inlet number is positive (more in�ow

paths to traverse), the thread terminates the current loop (because it cannot determine the longest

�ow length yet) and starts another from a new source cell. If the decremented inlet number is 0 (no

more in�ow paths to traverse), the current �ow length is compared with those of all in�ow neighbors

of the current cell and the source cell location with the longest �ow length is written in the current

cell in the path matrix (again, two int32s for row and column). Once the path matrix is updated,

the next downstream cell is visited. After the parallel loop is completed, the source cell locations

for all outlets are extracted from the path matrix. Figure 1 illustrates the initial and �nal states

of an inlet number matrix, along with the corresponding path matrix derived from the same data.

Figure 1a shows how source, link, and junction cells are coded initially in the inlet number matrix.

Junction cells are repeatedly updated until they become zero, as shown in Figure 1b. Finally, the

path matrix shown in Figure 1c contains either the counts of straight and diagonal moves in source

cells until longer paths are found, or the row and column of the source (starting) cell for their

longest �ow path in non-source cells. The thick cells in Figure 1c show the longest �ow path for the

red outlet cell. In this algorithm, single-cell longest �ow paths are handled specially because their

cells store the counts of straight and diagonal moves instead of their own locations.

−1 −1 −1 −1 −1

−1 3 2 −1 −2

−1 −2 2 2 −1

−1 −2 2 4 −1

−1 −1 −1 2 −1

(a) Initial inlet number matrix.

−1 −1 −1 −1 −1

−1 0 0 −1 −2

−1 −2 0 0 −1

−1 −2 0 0 −1

−1 −1 −1 0 −1

(b) Final inlet number matrix.

1, 3 1, 0 1, 0 1, 1 2, 1

1, 0 1, 1 1, 4 1, 0 1, 5

1, 2 3, 1 1, 1 1, 5 0, 1

2, 0 4, 1 3, 1 1, 1 1, 0

0, 1 0, 1 0, 1 1, 1 1, 0

(c) Path matrix.

Figure 1: Illustration of an inlet number matrix and a path matrix for BLFP. Blue arrows indicate �ow directions
and the red cell is the outlet cell. Green and yellow cells are source and link cells, respectively. In the path matrix,
source cells shown in green store the numbers of straight moves and diagonal moves until alternative paths become
longer, while other cells store the row and column of the source (starting) cell for their longest �ow path. Thick
cells form the longest �ow path for the given outlet cell shown in red. Along this longest �ow path, all but the
source cell refer to their source cell location (1, 1) and the source cell contains (1, 3), which indicates one vertical
move and three diagonal moves between the source and outlet cells.

BLFP cannot determine multiple alternative longest �ow paths per outlet because no more

than one source cell location can be stored in a path matrix cell. Additionally, when outlets have
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upstream-downstream hierarchical relationships, this algorithm cannot compute the longest �ow

path for each subwatershed without overlap. Depending on the landscape and �ow dynamics,

subwatershed-speci�c longest �ow paths may be necessary, and this limitation could restrict the

algorithm's applicability for certain hydrologic modeling. Because this algorithm discovers �ow

paths in a top-down manner, it has to visit all cells in the input matrix regardless of the number

of outlets, making its computation time predictable. In this algorithm, the 1-byte unsigned integer

type (uint8) is used for the �ow direction matrix. To avoid checking for edge cells, it uses �framed�

matrices where single-cell borders are added. Three matrices (�ow direction, inlet number, and path)

are required and their total memory size is 10(R+ 1)(C + 1) bytes, which can be approximated by

MBLFP(N) = 10N bytes (1)

where R and C are the numbers of rows and columns, respectively, and N is the total number of

cells, RC. The time complexity is O(N).

3. Methods and data

3.1. Memory-e�cient longest �ow path (MELFP) algorithm

Recursive problem de�nition Unlike the BLFP algorithm, the Memory-E�cient Longest Flow Path

(MELFP) algorithm employs a bottom-up approach. In MELFP, multiple threads begin at an outlet

and trace upstream recursively, uncovering all relevant cells along the way in parallel. Cho (2020)

de�ned the Longest Flow Path (LFP) recursively as

−−→
LFPi ∈


{−−→
LFPj +

−→
L ji :

∣∣∣−−→LFPj +
−→
L ji

∣∣∣ ≥ ∣∣∣−−→LFPk +
−→
L ki

∣∣∣ ∀j, k ∈ UPi, j ̸= k
}

if UPi ̸= ∅{
0⃗
}

otherwise
(2)

where
−−→
LFPi is a longest �ow path for cell i,

−→
L ji is the �ow path from cells j to i, and UPi is

the set of immediate upstream neighbor cells �owing into cell i. One can recursively trace up all

cells in UPi in serial or in parallel, calculating their longest �ow lengths, and then determine the

longest �ow path for cell i once the tracing of all its upstream cells is complete. However, this

approach typically requires a trace-up function that must be called recursively, which can lead to

a stack over�ow if the longest �ow path is very long. Memory primarily consists of the call stack

for function calls and the heap for dynamic allocation. Since the size of the call stack is �xed at

compile time, a stack over�ow can occur if deep recursive function calls exhaust its capacity. For

this reason, Cho (2020) proposed both recursive and iterative versions of his serial longest �ow path

algorithm.

Explicit stack and tail recursion In a similar recursive problem for watershed delineation, Cho

(2025) utilized an explicit stack in the heap and tail recursion to overcome the limitation of

the call stack size. Explicit stacks are dynamically allocated in the heap and manually managed,
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preventing stack over�ows. To avoid deep recursion, his algorithm traces up only one upstream

cell using tail recursion, storing the remaining cells in the explicit stack for subsequent traversal.

Since tail recursion can be optimized or transformed into an iterative while loop, it minimizes call

stack usage, e�ectively preventing a stack over�ow. He also employed the node-skipping depth-

�rst search to reduce the size of the explicit stack because, based on the statistics of the NIDP

matrix, approximately 50% of cells were link cells, connecting only one upstream cell to its

downstream cell. Recursively, longest �ow path computation is similar to watershed delineation

in that both algorithms must visit all the cells in the watershed for each outlet. The MELFP

algorithm employs the same techniques but introduces a key improvement called loop-then-task for

better load balancing.

Headwater cells Headwater cells are de�ned as cells in the �ow direction matrix that have no

in�owing neighbors (i.e., no adjacent cells that �ow into them). The longest �ow path always starts

from a headwater cell by its de�nition. The current implementation of MELFP identi�es headwater

cells for benchmarking purposes against the BLFP algorithm, as BLFP follows the same approach.

To generate actual longest �ow �paths� from identi�ed headwater cells to outlet cells in vector

format, one can use the GRASS (Neteler et al., 2012) module r.path, which traces paths using the

�ow direction raster.

Loop-then-task version Algorithms 1�3 list the pseudocode for the loop-then-task version of the

MELFP algorithm. Lines 11�38 in Algorithm 1, and lines 25 and 30�33 in Algorithm 2 implement

the loop-then-task approach. In OpenMP, loop-based parallelism uses implicit tasks generated by

parallel constructs, while task-based parallelism uses explicit tasks generated by task constructs

(Jin and Baskaran, 2018). While OpenMP's task-based parallelism provides �exibility for handling

complex and irregular workloads, it incurs overheads that may a�ect performance when compared

to loop-based parallelism (Jin and Baskaran, 2018; Valter et al., 2022). Selecting between these

parallelization models should account for the workload's characteristics and the trade-o�s associated

with the overhead. The loop-then-task MELFP algorithm has one parameter called the Tracing

Stack Size (TSS), which determines when to switch from looping to tasking for each thread. If

the cell stack size reaches this threshold value, MELFP starts creating tasks instead of pushing

discovered cells onto the stack for later tracing.

Loop-only version Since Algorithm 1 only reaches lines 11�38 if Algorithm 2 returns True, it is

straightforward to convert this algorithm into a loop-only version by removing lines 25 and 30�33

in Algorithm 2. This loop-only version will be referred to as MELFPl hereinafter. In MELFPl, no

special techniques are used to improve load balancing, other than assigning one outlet to a thread

at a time. If an outlet has a very long longest �ow path, the assigned thread will take a signi�cant

amount of time. If this outlet is part of the last iteration, the other threads will be forced to wait and

remain idle. This issue is one of the limitations discussed in Cho (2025) as the potential performance

bottleneck caused by the last thread team in the case of a large watershed.
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Require: FDR ▷ Binary-encoded �ow direction matrix in uint8

Require: O ▷ Set of outlets in the outlet list data structure
Require: FULL ▷ Boolean variable indicating whether full LFPs should be calculated
1: (R,C)← Numbers of rows and columns of FDR, respectively
2: OD← Outlet �ow directions from FDR ▷ Store outlet �ow directions in a global set
3: FDR cell values at outlets ← 0 ▷ Clear �ow directions at outlets to avoid cross-tracing
4: parfor i← 1 to |O| ▷ OpenMP parallel for loop
5: (r, c)← Oi ▷ Row and column of outlet i
6: (no, nd)← New int variables ▷ Numbers of orthogonal and diagonal moves
7: l← New double variable ▷ LFP length
8: H← New list ▷ LFP headwater cells
9: STACK← New stack
10: if TraceUp(FDR, r, c, 0, 0,&no,&nd,&l,H,STACK) = True then
11: repeat

12: while |STACK| > 0 do

13: (r′, c′, n′d,o, n
′
d,d)← Pop a branching node from STACK ▷ OpenMP critical statement

14: task ▷ Trace another branch from (r′, c′) in a new OpenMP task
15: (n′o, n

′
d)← New int variables

16: l′ ← New double variable
17: H′ ← New list
18: STACK′ ← New stack
19: if TraceUp(FDR, r′, c′, n′d,o, n

′
d,d,&n

′
o,&n

′
d,&l

′,H′,STACK′) = True then

20: while |STACK′| > 0 do

21: (r′′, c′′, n′′d,o, n
′′
d,d)← Pop a branching node from STACK′

22: Push (r′′, c′′, n′′d,o, n
′′
d,d) to STACK ▷ OpenMP critical statement

23: end while

24: end if

25: critical ▷ OpenMP critical block
26: if l′ ≥ l then
27: if l′ > l then ▷ If a new LFP is longer than the previous one
28: (no, nd, l)← (n′o, n

′
d, l

′) ▷ Update length information
29: Clear H ▷ Remove previous LFP headwater cells
30: end if

31: Add all LFP headwater cells in H′ to H
32: end if

33: end critical

34: Clear H′

35: end task

36: end while

37: Wait until all tasks are completed
38: until |STACK| = 0
39: end if

40: Clear STACK
41: Store (no, nd, l,H) in Oi

42: end parfor

43: if FULL = True then
44: parfor each non-null cell X in FDR ▷ OpenMP parallel for loop
45: if X ∧̇(X − 1) > 0 then X ← X − 5 ▷ Recover the original �ow direction
46: end parfor

47: FindFullLFP(FDR,O,OD)
48: end if

Algorithm 1: Pseudocode for the proposed MELFP algorithm. The & operator indicates that the

subsequent variable is passed by reference. ∧̇ is the bitwise AND operator.
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Require: TSS← 3072 ▷ Tracing stack size for switching from tail recursion to new tasks
1: function TraceUp(FDR, r, c, nd,o, nd,d, n

∗
o, n

∗
d, l

∗,H,STACK)
2: u← 0 ▷ Counter for in�owing neighbor cells of (r, c)
3: for each in�owing neighbor cell X of (r, c) do ▷ In the order of E, S, W, N, SE, SW, NW, NE
4: u← u+ 1
5: if u = 1 then

6: (rn, cn)← Row and column of X
7: if X is an orthogonal neighbor then
8: (o, d)← (1, 0)
9: else

10: (o, d)← (0, 1)
11: end if

12: X ← X + 5 ▷ This cell is done
13: end if

14: end for

15: if u = 0 then ▷ If (r, c) is a source cell
16: f ← nd,o + nd,d ×

√
2 ▷ Flow length

17: if f ≥ l∗ then

18: if f > l∗ then ▷ If this �ow length is longer than the current LFP length
19: (n∗o, n

∗
d, l

∗)← (nd,o, nd,d, f) ▷ Update length information
20: Clear H ▷ Remove previous LFP headwater cells
21: end if

22: Add (r, c) to H
23: end if

24: if |STACK| = 0 then return False
25: if |STACK| ≥ TSS then return True ▷ If the stack size is greater than the prede�ned size
26: (rn, cn, nd,o, nd,d)← Pop a branching node from STACK
27: else if u > 1 then ▷ If (r, c) is a junction cell
28: Push (r, c, nd,o, nd,d)← to STACK
29: end if

30: if |STACK| ≥ TSS− 1 then ▷ If the stack size is greater than the prede�ned size
31: Push (rn, cn, nd,o + o, nd,d + d)← to STACK
32: return True
33: end if

34: return TraceUp(FDR, rn, cn, nd,o + o, nd,d + d, no, nd, l,H,STACK) ▷ Tail-recursive return
35: end function

Algorithm 2: Pseudocode for the TraceUp function. Arguments superscripted by ∗ are passed by

reference. E, S, W, N, SE, SW, NW, and NE denote in�owing directions east, south, west, north,

southeast, southwest, northwest, and northeast, respectively.

Task-for-last-outlet version Another version, called task-for-last-outlet and referred to as MELFPt,

was also considered in this study. MELFPt counts the number of remaining outlets atomically

and replaces the conditions in lines 25 and 30 in Algorithm 2 with if nr = 1 ∧ |STACK| ≥ nt and
if nr = 1 ∧ |STACK| ≥ nt − 1, respectively, where nr is the number of remaining outlets and nt

is the number of threads available for tasking (e.g., the total number of threads minus one for the

main thread in this study). MELFPt begins creating tasks if the cell stack size for the last outlet

exceeds the number of tasks. Using this approach, the other threads still have to wait until the last

one collects enough junction cells in the cell stack.
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1: function FindFullLFP(FDR,O,OD)
2: if |O| = 1 then return ▷ If there is only one outlet, do nothing
3: F ← False
4: parfor i← 1 to |O| ▷ OpenMP parallel for loop
5: (r, c)← Row and column of Oi

6: (no, nd)← (0, 0)
7: d← ODi ▷ Read the outlet �ow direction
8: repeat

9: Trace down one cell in �ow direction d and update (r, c, no, nd) accordingly
10: d← FDRr,c ▷ Update �ow direction
11: until an outlet or no downstream cell is found
12: f ← no + nd ×

√
2 ▷ Calculate the downstream �ow length

13: Store downstream �ow length f in Oi

14: if (r, c) is an outlet Oj then

15: Flag Oj as having an upstream outlet
16: Store its downstream outlet index j in Oi

17: F ← True ▷ Found hierarchical outlets
18: end if

19: end parfor

20: if F = False then return

21: for each outlet Oi without upstream outlets but with an downstream outlet in O do

22: j ← i ▷ Index of the current outlet
23: k ← Downstream outlet index of Oi

24: repeat

25: l← LFP length of Oj

26: f ← Downstream �ow length of Oj

27: l′ ← l + f ▷ LFP length plus downstream �ow length of the current outlet
28: if l′ ≥ l of Ok then

29: if l′ > l of Ok then ▷ If the new combined LFP length is longer than the LFP length of
the downstream outlet

30: Clear the list of headwater cells of Ok

31: Overwrite the LFP length of Ok with l′

32: end if

33: Add all LFP headwater cells of Oj to the list of headwater cells of Ok

34: end if

35: Clear the downstream outlet index of Oj ▷ Avoid unnecessary duplicate tracing later
36: j ← k
37: k ← Downstream outlet index of Oj

38: until no more subsequent downstream outlet is found
39: end for

40: end function

Algorithm 3: Pseudocode for the FindFullLFP function.

How it works First, the �ow directions of all outlet cells are stored in an array, and their values are

cleared in the �ow direction matrix to avoid traversing through the outlets. This initial step is to

�nd subwatershed-speci�c longest �ow paths �rst. Next, in a parallel loop, each thread starts tracing

upwards from an outlet cell using the �rst incoming cell found, pushing junction cells onto the stack.

When the thread reaches a headwater cell with no incoming cells, it pops one cell from the stack

and begins tracing upwards from that cell. If the stack is empty and there are no cells to pop, all the
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cells in this watershed have been uncovered, and the process starts again from another outlet cell.

Once longest �ow paths for all subwatersheds are computed, their upstream-downstream hierarchy

is established, and full longest �ow paths are calculated. The complete algorithm is provided in

Algorithms 1�3 for further details.

Simple demonstration Figure 2 demonstrates the workings of MELFP's recursive tracing for one

outlet using the same �ow direction matrix from Figure 1. Because there is one outlet, this problem is

solved using only one thread without loop-then-task. However, the loop-then-task approach makes it

possible to solve it using multiple threads with a TSS of 3. Suppose thread 1 was initially responsible

for tracing the outlet cell 24. In Figure 2e, the stack size reaches 3, triggering explicit task creation

(switching from looping to tasking). At this point, thread 1 stops tracing, pops the three cells (24,

19, and 14) from the stack, and creates explicit tracing tasks for each cell. Idle threads can then

pick up these tasks and begin tracing.

Memory requirements Unlike the BLFP algorithm, none of the three versions of MELFP require

intermediate matrices, such as the NIDP matrix or the inlet number matrix. Instead, each thread

utilizes its own private explicit stack to store junction cells until all the cells in its watershed are

discovered. Because junction cells are continuously pushed to and popped from the explicit stack,

estimating the total required memory is not straightforward. However, by considering the unrealistic,

hypothetical worst-case scenario where nodes are only pushed onto the stack until the algorithm

�nishes, the maximum memory requirements for the explicit stack, as well as the input and output

storage, can be estimated. Based on Cho (2025), about 20% of �ow direction cells are junction

cells. Each junction cell in the explicit stack stores four int32s�row, column, orthogonal moves,

and diagonal moves�as shown in line 28 in Algorithm 2, and the worst-case memory amount of

STACK in Algorithm 1 becomes 0.2N×4×4 = 3.2N bytes (i.e., 20% of all cells N times the size of

all the four variables). On average based on the preliminary results of this study, each outlet had 1.2

longest �ow paths, and the approximated memory size ofH in Algorithm 1 is 1.2|O|×2×4 = 9.6|O|
bytes because each headwater cell contains its row and column in two int32s. The total memory

size required by the major data storage�the input �ow direction matrix in uint8, the explicit

stack, and the output headwater cell list�can be overestimated by

MMELFP(N, |O|) = 3.2N + 9.6|O|bytes. (3)

3.2. Performance evaluation methods

Data for the �ow direction matrix and outlets This study used the same 30m D8 �ow direction

matrix and 46 random outlet sets from Cho (2025) that cover the entire Contiguous United

States (CONUS). The �ow direction matrix was derived from the 1′′ National Elevation Dataset

(NED) (U.S. Geological Survey, 2023) Digital Elevation Model (DEM) using the GRASS modules

r.watershed (Ehlschlaeger, 1989) and r.mapcalc. The total number of cells in the �ow direction

matrix is N = 14,998,630,400, with Nn = 8,988,260,894 non-null cells (60%). The 46 random
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(a) Step 1. The outlet cell 24 discovers
N19 and NW18. (24). Move to 19.
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(b) Step 2. Cell 19 discovers E20, N14,
NW13, and NE15. (24, 19). Move to 20.
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11 12 13 14 15

16 17 18 19 20
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(c) Step 3. Cell 20 is a headwater cell.
(24). Move to 19.

1 2 3 4 5
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16 17 18 19 20

21 22 23 24 25

(d) Step 4. Cell 19 discovers N14, NW13,
and NE15. (24, 19). Move to 14.
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11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(e) Step 5. Cell 14 discovers N9 and
NE10. (24, 19, 14). Move to 9.
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(f) Step 6. Cell 9 is a headwater cell. (24,
19). Move to 14.
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16 17 18 19 20

21 22 23 24 25

(g) Step 7. Cell 14 discovers NE10. (24,
19). Move to 10.
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16 17 18 19 20

21 22 23 24 25

(h) Step 8. Cell 10 discovers N5. (24,
19). Move to 5.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

(i) Step 9. Cell 5 is a headwater cell.
(24). Move to 19.

Figure 2: Demonstration of how MELFP's recursive tracing works. Blue arrows indicate �ow directions and the
red cell is the outlet cell. Numbers are cell identi�ers (IDs). Green and yellow cells are headwater (source) and link
cells, respectively. Thick black cells indicate the current cell in each step and thick gray cells indicate visited cells.
In�owing cells are discovered in the order of E, S, W, N, SE, SW, NW, and NE. Each direction letter followed by
a number denotes the in�owing cell from that direction, where the number represents the cell's ID. Parentheses
show the state of STACK. A cell is pushed to STACK if it has more than one untraced in�owing cell. A cell
is popped from STACK and becomes the next cell if the current cell is a headwater cell.
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outlet sets were generated using the GRASS modules r.accumulate (Cho, 2020) and r.mapcalc to

ensure a minimum drainage area of 90 km2, and r.random, with the number of outlets serving as

the seed for random number generation for each set. Additionally, a set of �all outlets,� consisting

of 515,152 edge cells that drain away from the 30m CONUS �ow direction matrix, was included,

bringing the total to 47 outlet sets. The number of outlets in each outlet set i = 1, · · · , 47 can be

written as

N(i) = (1− χ47(i))

(
i− 9

⌊
i− 2

9

⌋)
10⌊

i−2
9 ⌋ + χ47(i) · 515,152 (4)

where χ47(i) is the indicator function that returns 1 if i is 47 and 0 otherwise. Figure 3 shows the

di�erent numbers of outlets that were tested in this experiment. Each of the 47 outlet sets has a

varying number of unique outlets and there are total 1,115,147 outlets from all the 47 sets, with

5476 duplicates from di�erent sets. In total, this study tested 1,109,671 unique watersheds in the

CONUS from all the 47 outlet sets. Therefore, the evaluation includes both representative real-

world applications and large-scale worst-case performance scenarios, demonstrating the algorithm's

e�ectiveness in practice.

1 10 19 28 37 47
100

101

102

103

104

105

106

i

N
(i
)

Figure 3: Number of outlets in the 47 outlet sets. i is the number for an outlet set and N(i) is the number of
outlets in set i. The red dot indicates the �all outlets� set.

Systems used for algorithm execution Table 1 presents the speci�cations of the systems used for

algorithm execution. Six identical systems were employed to run �ve out of 30 trials per system for

each combination of methods, outlet sets, and thread counts.

Performance measures The htop program (htop dev team, 2024) was used to measure the size of

the in-use and reserved memory of the process (the size of virtual memory in the VIRT column).

However, virtual memory usage was measured for only one trial with the largest set of outlets, as it

required visual observation. The GNU time command (/usr/bin/time) (Free Software Foundation,

2024) was used to measure the percentage of the Central Processing Unit (CPU) (%P in the
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Table 1

System speci�cations.

Item Description

CPU Intel® Core� i9-12900 @ 2.40GHz
Threads 24
Memory 128GiB
System architecture 64-bit x86_64
Operating system Linux kernel version 6.6.23
OpenMP compiler GNU Compiler Collection (GCC) version 13.2.0
GeoTIFF/Shape�le library Geospatial Data Abstraction Library (GDAL) version 3.8.4 C API

format string) and the maximum resident set size (%M in the format string) that the process

used while running. The CPU percentage re�ects CPU utilization in terms of the number of

CPUs, while the maximum resident set size indicates peak memory usage. Unlike the virtual

memory size reported by htop, the maximum resident set size only re�ects physical memory usage,

excluding reserved memory. For all the algorithms, including BLFP, computation time was measured

internally, excluding input and output operations involving data storage (e.g., solid-state drives in

this study). Speci�cally, the gettimeofday() function was used for the MELFP algorithms and

std::chrono::high_resolution_clock::now() for BLFP.

Strong scaling Strong scaling was evaluated across the 47 outlet sets (47 distinct problems), each

with a �xed size, by varying the number of threads. Strong speedup ψi(P ) for a given problem i

(outlet set i) is de�ned as a function of the number of threads P and the computation time Ti(P ),

given by

ψi(P ) =
Ti(1)

Ti(P )
, (5)

and strong e�ciency ϵi(P ), again for the same problem i, is de�ned as a function of P and the

speedup ψi(P ), expressed as

ϵi(P ) =
ψi(P )

P
. (6)

Both ψi(P ) and ϵi(P ) are averaged across i and 30 trials for a given P to calculate ψ̄(P ) and ϵ̄(P ),

respectively.

Weak scaling Weak scaling tests were not considered because both MELFP and BLFP exhibit algo-

rithmic properties that violate key assumptions required for meaningful weak scaling evaluation�

such as consistent per-thread workload and strictly increasing problem sizes. Speci�cally, MELFP's

recursive approach �rst solves non-overlapping subproblems to compute subwatershed-level longest

�ow paths and then resolves overlapping watershed-level paths using hierarchical analysis. This

strategy avoids proportionally increasing problem sizes with the number of threads. In contrast,

BLFP processes all cells in the domain regardless of the number of outlets, making its workload

independent of the problem size.
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Sensitivity of computation time to the tracing stack size To evaluate the impact of the TSS

parameter on computation time, 10 di�erent TSS values (1024i for i = 1, · · · , 10) were tested

30 times for each combination of outlet sets and thread counts. The total number of runs was

10 × 47 × 24 × 30 = 338,400 (10 TSS values, 47 outlet sets, 24 threads, and 30 trials). In this

test, computation time was averaged for each TSS value across all outlet sets, threads, and trials,

resulting in 10 values. The coe�cient of variation of these 10 computation times was then evaluated.

The remainder of the study used only one optimal value of TSS based on this evaluation.

Comparison of the three MELFP versions This test compared the performance of the three

versions�MELFP (loop-then-task), MELFPl (loop-only), and MELFPt (task-for-last-outlet)�for

the 47 outlet sets. The total number of runs was 3× 47× 24× 30 = 101,520 (3 methods, 47 outlet

sets, 24 threads, and 30 trials).

Overhead for computing full longest �ow paths The proposed algorithm is primarily designed to

identify longest �ow paths within subwatersheds and requires a separate analysis to determine full

longest �ow paths crossing subwatershed boundaries. Computation time for this latter analysis was

evaluated by running subwatershed-speci�c and full longest �ow path computations separately. For

the 47 outlet sets, subwatershed-speci�c longest �ow paths were computed using MELFP (loop-

then-task) a total of 47× 24× 30 = 33,840 times (47 outlet sets, 24 threads, and 30 trials).

Benchmark comparing with the BLFP algorithm For this benchmark test, only MELFP (loop-then-

task) and BLFP were compared because MELFP outperformed both MELFPl and MELFPt. The

total number of runs was 2 × 47 × 24 × 30 = 67,680 (2 methods, 47 outlet sets, 24 threads, and

30 trials). Since subwatershed-speci�c longest �ow paths were not compared in this test (because

BLFP cannot compute them), MELFP was run for full longest �ow path computations only.

4. Results and discussion

4.1. Analysis of the MELFP results

Sensitivity of computation time to the tracing stack size The coe�cient of variation of the 10 TSS-

speci�c computation times showed a low degree of variability with 0.0079. In other words, TSS

contributed to a variation of less than 1% in computation time. This result indicates that TSS

had low impact on overall computational e�ciency across di�erent problem sizes with varying

numbers of outlets. However, for di�cult problems with long longest �ow paths, TSS exhibited

di�erent behavior with higher variability in computation time. Figure 4 illustrates the sensitivity of

computation time to TSS by presenting the ratio of computation time to the minimum computation

time for outlet sets with the longest (515,152-outlet set) and second-longest (60-outlet set) �ow

paths, along with the mean for each TSS. The coe�cients of variation for the 60- and 515,152-

outlet sets are 0.0486 and 0.0277, respectively. Based on these results, a TSS of 3072 was selected

for the remainder of the study because it provided the best performance for the largest problem

(515,152-outlet set) and on average.
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Figure 4: Sensitivity of computation time to tracing stack size. Scaled computation time is calculated as t/tmin,
where, for each number of outlets, t is computation time and tmin is the minimum computation time, respectively.

Comparison of the three MELFP versions Figure 5 presents the comparison results of the three

MELFP versions. In Figures 5a and 5b, the loop-only version, MELFPl, demonstrated the poorest

performance and the lowest CPU utilization when tested with the 60-outlet set. One outlet in this

set has the second longest �ow path among all the outlets from the 47 sets, causing the last thread in

MELFPl to take signi�cantly longer while the other threads became idle near the end of processing.

Other spikes in Figure 5a are also due to large watersheds in those random outlet sets. The task-

for-last-outlet version, MELFPt, showed improved performance, but the loop-then-task version,

MELFP, outperformed all the other versions. The high variability in CPU utilization for MELFPl

and MELFPt was the primary motivation for this study. In MELFPl, each thread is assigned only

one outlet, and once it completes its longest �ow path computation for that outlet, it becomes idle,

leading to signi�cantly reduced CPU utilization as the algorithm progresses. Similarly, in MELFPt,

threads remain idle after �nishing their assigned computation until only one outlet is left, at which

point the remaining threads join in. Figures 5c and 5d demonstrate the signi�cant improvement

in load balancing achieved by the loop-then-task approach. Using 24 threads, MELFPt reduced

computation time by a factor of 2.45 compared to MELFPl, while MELFP achieved a 4.58-fold

reduction. Under the same conditions, MELFPt and MELFP improved CPU utilization by factors

of 2.60 and 10.09, respectively.

Overhead for computing full longest �ow paths Unlike BLFP, which only computes full longest �ow

paths, MELFP �rst calculates longest �ow paths for individual subwatersheds and then determines

full longest �ow paths by analyzing the upstream-downstream relationships of the previously

computed subwatershed-speci�c paths. This approach o�ers advantages for conducting detailed

and localized hydrologic modeling. Figure 6 illustrates the overhead incurred from calculating full

longest �ow paths based on the subwatershed-speci�c results. As shown in Figure 6a, the overhead in

absolute computation time remained consistent across di�erent numbers of outlets (nearly parallel
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(a) Computation time averaged across 24 thread counts.
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(b) CPU utilization using 24 threads.
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(c) Computation time for the 60-outlet set.
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(d) CPU utilization for the 60-outlet set.

Figure 5: Improved load balancing by the loop-then-task approach. All measurements are averaged across 30
trials �rst.

red and gray lines), with a mean of 1.75 s and a standard deviation of 0.15 s. Similarly, as depicted

in Figure 6b, it was consistent across varying numbers of threads (again, nearly parallel red and

gray lines), with a mean of 1.75 s and a standard deviation of 1.71 s. However, for smaller numbers

of outlets, the relative overhead (blue) was high (e.g., 99.4% for one outlet), but it decreased

signi�cantly as the number of outlets increased (e.g., 5.0% for 100,000 outlets). Nevertheless, across

all thread counts, the relative overhead (blue) remained relatively small, ranging from 9.5% to

11.1%.

4.2. Benchmark results comparing with the BLFP algorithm

In-use and reserved memory usage First, to compare the memory usage of both algorithms, the

most challenging problem, involving the largest set of 515,152 outlets, was considered. This outlet
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0 5 10 15 20 25

20

40

60

80

Number of threads

C
o
m
p
u
ta
ti
o
n
ti
m
e
(s
)

9.5

10

10.5

11

O
v
er
h
ea
d
(%

)

Full (s)

Sub (s)

OH (%)

(b) Mean across 47 outlet sets.

Figure 6: Computation time and overhead percentage. All measurements are averaged across 30 trials �rst. Full:
full longest �ow paths, Sub: subwatershed-speci�c longest �ow paths, OH: overhead.

set represents the worst-case scenario, as all 515,152 longest �ow paths are independent with no

upstream-downstream hierarchy. As a result, MELFP must trace full longest �ow paths using

the loop-then-task approach, whereas BLFP always traces them in any problem because it does

not �nd subwatershed-speci�c longest �ow paths. Since the virtual memory size (VIRT column in

htop) re�ects both in-use and reserved memory for each algorithm, it should closely align with

the theoretical memory footprint approximation of both algorithms, as given in Eqs. (1) and (3).

The htop program reported 29GiB and 143GiB, respectively, for MELFP and BLFP. Eq. (3) gives

45GiB overestimating the required memory size by 35% for MELFP, while Eq. (1) gives 140GiB

underestimating the required memory size by 2% for BLFP. For this worst-case scenario problem,

MELFP needed 20% of what BLFP used and reserved.

Peak memory usage However, actual memory usage may di�er, as only 60% of the total N cells

contribute to the algorithm, and not all allocated memory is utilized. Peak memory usage remained

stable, with a low coe�cient of variation (3Ö 10=4 and 1Ö 10=5, respectively, for MELFP and

BLFP) across di�erent outlet sets and thread counts for both algorithms. The peak memory sizes

for MELFP and BLFP were 20GiB and 96GiB, respectively, and MELFP achieved a 79% reduction

in memory consumption.

Computation time and CPU utilization Figure 7 shows the computation time and CPU utilization of

both algorithms across di�erent outlet counts. As a top-down algorithm, BLFP exhibited consistent

performance regardless of the outlet count, whereas MELFP showed an increasing pattern in

computation time as the number of outlets grew. On average, MELFP outperformed BLFP by 66%,

demonstrating a signi�cant improvement in computation time. This improvement suggests that

MELFP is more e�cient in calculating the longest �ow path, potentially because of its optimized

memory e�ciency (e.g., eliminating the use of any intermediate read-write matrices such as the
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inlet number matrix) and better handling of the problem constraints (e.g., tracing a subset of

the input �ow direction matrix). The faster performance of MELFP highlights its suitability for

scenarios requiring rapid computation, especially when dealing with larger datasets or more complex

problems. Also, MELFP utilized 33% more CPU resources than BLFP, which indicates that its

improved performance came from higher computational demand. The higher CPU utilization could

be due to the recursive parallelization strategies employed in MELFP, which may involve more

intensive CPU operations to achieve the increased speed. This trade-o� between computational

performance and resource usage can be an important factor in situations where faster computation

is prioritized over lower CPU usage, particularly in high-performance computing environments.

Further optimization could focus on reducing the CPU usage of MELFP without sacri�cing the

performance gains. This optimization could potentially make the algorithm a more balanced solution

for a broader range of applications.
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(b) CPU utilization using 24 threads.

Figure 7: Computation time and CPU utilization averaged across all thread counts and trials for each number of
outlets. CPU utilization is reported by /usr/bin/time as the �percentage of the CPU that this job got�, which
is the ratio of the combined CPU time in user mode and kernel mode to the total elapsed real time.

Strong scaling The scaling results of both algorithms were similar. Figures 8a and 8b indicate that

both MELFP and BLFP exhibited comparable strong scaling performance as the number of threads

increased. While MELFP initially showed slightly better strong scaling, its performance eventually

converged with that of BLFP as more threads were used in both the speedup and e�ciency tests.

Advantages and disadvantages of OpenMP-based methods While the MELFP and BLFP algorithms

are the only parallel algorithms, to the best of the author's knowledge, known for the longest

�ow path problem regardless of technologies, a conceptual comparison with Message Passing

Interface (MPI)- (Message Passing Interface Forum, 2021) and Graphics Processing Unit (GPU)-

based approaches is useful. MPI-based methods may o�er better scalability on distributed-memory
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Figure 8: Strong scaling test results averaged per number of threads across all trials.

systems but would introduce signi�cant implementation complexity and communication overhead.

GPU-based methods could exploit massive parallelism, but adapting the tail-recursive structure

of MELFP to GPU architectures would require careful restructuring and memory management

with relatively costly and limited memory capacity. In contrast, OpenMP-based methods provide

a balance between ease of implementation and e�cient shared-memory parallelism, particularly

suitable for multi-core CPUs. However, if the input data exceeds the memory capacity of a single

machine, OpenMP-based algorithms will need to be extended to distributed-memory parallelism

such as MPI.

5. Conclusions

This study introduced a new OpenMP parallel algorithm for Memory-E�cient Longest Flow

Path (MELFP) computation. Three versions of the proposed algorithm were implemented: loop-

then-task, loop-only, and task-for-last-outlet. Among these, the loop-then-task version signi�cantly

improved load balancing compared to the other two and demonstrated the best overall performance.

Its computational performance remained stable regardless of the tracing stack size, the threshold

parameter for switching from looping to tasking. Unlike its benchmark algorithm, MELFP �rst com-

putes longest �ow paths for individual subwatersheds and then determines full longest �ow paths,

with a relative overhead of less than 11.1%. In the benchmark experiment, MELFP outperformed

BLFP by 66% in terms of computation time and demonstrated its better computational e�ciency.

However, this performance gain came at the cost of 33% higher CPU utilization and re�ected a

trade-o� between performance and resource consumption. Despite these observations, the higher

CPU utilization in MELFP may be justi�ed in situations where rapid computation is prioritized over

CPU demand, such as in high-performance computing environments. In terms of memory usage,
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MELFP demonstrated a signi�cant advantage, with peak memory consumption 79% lower than that

of BLFP. This substantial reduction of MELFP in memory usage enables the processing of datasets

approximately �ve times larger than what BLFP can handle. This lower memory consumption

makes the new algorithm a more scalable solution for large-scale hydrologic analysis. The scaling

behavior of both algorithms was similar, although MELFP initially exhibited slightly better scaling

before converging to the performance of BLFP as the number of threads increased. Overall, MELFP

provides a compelling option for scenarios where reduced computation time is critical or longest

�ow paths for individual subwatersheds are needed for detailed and localized hydrologic modeling.

Future work could focus on optimizing CPU e�ciency while maintaining its performance bene�ts.

This optimization could make it a more balanced solution for a broader range of applications. In

addition, although this study focuses on shared-memory parallelism using OpenMP, extending the

approach to distributed-memory environments may be necessary to support datasets that exceed

the memory capacity of a single machine.
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