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Abstract

The Federal Emergency Management Agency has introduced the concept of the “1-
percent plus” flow to incorporate various uncertainties in estimation of the 100-year
or 1-percent flow. However, to the best of the authors’ knowledge, no clear directions
for calculating the 1-percent plus flow have been defined in the literature. Although
information about standard errors of estimation and prediction is provided along
with the regression equations that are often used to estimate the 1-percent flow
at ungaged sites, uncertainty estimation becomes more complicated when there is
a nearby gaged station because regression flows and the peak flow estimate from
a gage analysis should be weighted to compute the weighted estimate of the 1-
percent flow. In this study, an equation for calculating the 1-percent plus flow at an
ungaged site near a gaged station is analytically derived. Also, a detailed process is
introduced for calculating the 1-percent plus flow for an ungaged site near a gaged
station in Georgia as an example and a case study is performed. This study provides
engineers and practitioners with a method that helps them better assess flood risks
and develop mitigation plans accordingly.

Keywords: Uncertainty analysis, 100-year flow, Regression equation, Flood, Risk
assessment, Floodplain

*NOTICE: This is the author’s version of a work that was accepted for publication in the
Journal of Hydrology. Changes resulting from the publishing process, such as peer review, editing,
corrections, structural formatting, and other quality control mechanisms may not be reflected in
this document. Changes may have been made to this work since it was submitted for publication.
A definitive version was subsequently published in the Journal of Hydrology 539, 640-647 (August
2016), doi:10.1016/j.jhydrol.2016.05.070.

CITATION: Cho, H., Bones, E., 2016. Quantification of uncertainties in the 100-year flow
at an ungaged site near a gaged station and its application in Georgia. Journal of Hydrology 539,

640-647.

(© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0.

*Corresponding author.
Email address: hcho@isnew.info (Huidae Cho)

Preprint submitted to Journal of Hydrology February 24, 2017



1. Introduction

This study introduces a new uncertainty concept in flood insurance studies by the
Federal Emergency Management Agency (FEMA), investigates how uncertainties in
flow prediction are propagated through the flow weighting method developed by U.S.
Geological Survey (USGS), and derives an analytical solution that quantifies those
uncertainties.

The National Flood Insurance Program (NFIP) was created by the United States
Congress through the passage of the National Flood Insurance Act of 1968 (FEMA,
2002). The Act was created in response to Hurricane Betsy which caused over one
billion dollars in damage to the Gulf States. It was the first hurricane to cause
damages in excess of one billion dollars and received the nickname “Billion Dollar
Betsy” (Holladay and Schwartz, 2010). The devastation caused by poorly commu-
nicated risk can also be noted in recent flooding in South Carolina in October 2015,
where 17 people were killed by flood waters (CNBC Weather, 2015), and in Missouri
in January 2016, where 7100 buildings were affected by flooding and 25 people in
[linois and Missouri were killed by flood waters (ABC News, 2016). Currently, the
NFIP insures over 5.5 million properties, affecting over 10,000 communities (Holla-
day and Schwartz, 2010), and since insurance payouts became widespread in 1978,
it has provided 51.7 billion dollars in funds for homeowners (FEMA, 2015).

As the NFIP requires the purchase of flood insurance by property owners, a
standard had to be established “to be used as the basis for risk assessment, insurance
rating, and floodplain management” (FEMA, 2002). Based on these criteria, the
“l-percent annual chance flood” (i.e., 100-year or 1% flood) was recommended for
use as the NFIP standard (FEMA, 2002). The Department of Housing and Urban
Development (HUD) initially oversaw the mapping of the 1% floodplain in flood-
prone communities until 1979 when the responsibilities of the NFIP were taken
over by FEMA. Since the inception of the NFIP in 1968, the 1% floodplain has
been used to communicate the extent of the risk associated with flooding. However,
there are many uncertainties associated with predicting the 1% floodplain, and when
those uncertainties are accounted for, flooding risk has the potential to expand
linearly or non-linearly depending on the channel geometry (Jung and Merwade,
2015). Since uncertainty analysis for floodplain mapping provides more resilient
and reliable information for flood risk management (Ntelekos et al., 2006; Xu and
Booij, 2007; Jung and Merwade, 2015) and, as computer models and topography
have greatly improved since 1968, FEMA has realized the importance of evaluating
those uncertainties in order to communicate the potential risk to communities. To
facilitate the communication of risk, FEMA has added the “l-percent plus” flood
elevation to the Risk Mapping, Assessment, and Planning (Risk MAP) flood risk
products for all riverine analyses (FEMA, 2011, 2013). FEMA (2013) defines the
“l-percent plus” flood elevation as follows:

The 1% plus flood elevation is defined as a flood elevation derived by us-
ing discharges that include the average predictive error for the regression
equation discharge calculation for the Flood Risk Project. This error is

then added to the 1% annual chance discharge to calculate the new 1%



plus discharge. The upper 84-percent confidence limit is calculated for

Gage and rainfall-runoff models for the 1% annual chance event.

Statistically, the logarithmic 1% plus flow is one standard error of prediction away
from the mean logarithmic estimate of the 1% flow, which is equivalent to the upper
84% prediction limit in a one-tailed test. Modelers should derive the 1% plus flood
elevation by using the 1% plus flow, which indicates how uncertain the estimate of
the 1% flow is. Although the benefits of including uncertainty analyses in flood risk
assessments have been discussed previously in the literature (Ntelekos et al., 2006;
Xu and Booij, 2007; Jung and Merwade, 2012, 2015), it is not well established how
to obtain the 1% plus flow for estimating the corresponding flood elevation. Ames
(2006) proposed a bootstrap approach for obtaining confidence limits of low flow
from data and the same approach could be applied to flood studies if there were
enough peak flow data from which a large number of new “realizations” of peak flow
data could be generated. However this resampling technique is not applicable when
the area of interest is not gaged and no records of peak flows are available. Other than
this similar work of Ames (2006) that addresses uncertainties in low flow estimates
intead of peak flow estimates, the literature review has revealed no instructions on
how to compute the 1% plus flow to the best of the authors’ knowledge. Therefore,
with no guidance for modelers, they are unable to properly communicate the flood
risk to communities, endangering the persons and properties in flood-prone areas.

In order to accurately calculate the 1% plus flows and properly communicate risk
to those affected by floods, this study derives an equation for the 1% plus flow for
regression analyses weighted with historical gage records using the error propagation
method (Birge, 1939; Ku, 1966; Tellinghuisen, 2001). Additionally, a case study is
presented that develops the 1% plus flow based on the method discussed in this
study. The floodplains for the 1% and 1% plus flows are delineated and compared
to demonstrate how the 1% plus floodplain can be an effective tool to communicate
risk to communities and their residents.

2. Background

2.1. 1-percent flow

For FEMA flood studies, modelers often use USGS Scientific Investigations Re-
ports (SIR) for estimating the magnitude and frequency of floods for ungaged water-
sheds. USGS publishes regional flood-frequency equations for different exceedance
probabilities including the 1% chance flow for different states. For example, Got-
vald et al. (2009) derived the regional flood-frequency equations for rural ungaged
streams in Georgia. USGS takes the logarithm of peak flows and performs a re-
gression analysis using various watershed parameters including the drainage area,
slope, percents of the watershed falling in different hydrologic regions, etc. Using the
regression equations derived in this way, hydrologic modelers can estimate flows at
ungaged sites for a 1% chance of exceedance. A typical equation for such log-linear
regression analyses is as follows:

longzlogK+ZAilogXi (1)
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where log(+) is the logarithm function of base 10, @p is the flow of a P% probability,
K and A;’s are regression coefficients, and X;’s are independent variables describing
the watershed. One can obtain the final equation for Qp by taking the exponential
of both sides of Eq. (1) after a log-linear regression analysis as follows:

Qpr = K[ X" (2)
i=1

Eq. (2) can be used to estimate the P% flow at ungaged sites. USGS computes a
100(1 — a)% prediction interval for the true peak flow at an ungaged site using the
following inequation:

QP/C<QP<CQP (3)

where C' is defined as
C = 10%a/2n—p)Spi (4)

where t(q/2.n—p) is the critical value of the Student’s ¢-distribution at an « level and
degrees of freedom n—p, where n is the number of observations used for the regression
analysis and p is the number of regression variables; and S, ; is the standard error
of prediction for site i. Gotvald et al. (2009) defines S, ; as follows:

Spi = [72 + inXZ-T}O'5 (5)

where 2 is the model error variance, X; is a row vector of a 1 as the first element
followed by regression equation parameter values for site ¢, U is the covariance
matrix for the regression coefficients, and x? is the transpose of x;.

When there is a streamflow gage at the outlet of the study watershed, one can
analyze historical records of annual peak flows to estimate the P% flow without
having to use the regression equation. Assuming that annual peak flows follow
the log-Pearson Type III distribution as recommended by the Interagency Advisory
Committee on Water Data (1982), one can fit a distribution curve to historical
annual peak flows by adjusting its statistical parameters. The PeakFQ program
(Flynn et al., 2006) implements this parameter estimation procedure, and calculates
flows and confidence intervals for different probabilities. The user can obtain the
upper one-tailed 84% prediction limit of the 1% flow by changing the confidence
intervals parameter to 0.84 (i.e., 84%). This upper 84% prediction limit is located
one standard prediction error away from the mean estimate of the 1% flow and
corresponds to the definition of the 1% plus flow.

2.2. Weighted flow estimate for an ungaged site near a gaged station

Since the area of interest is most likely ungaged, the regression analysis is needed
to estimate peak flows. However, if there is a gaged station near the ungaged site
of interest, it is recommended by the Interagency Advisory Committee on Water
Data (1982) to incorporate the gage data into the regression analysis to produce
results that more closely resemble the real-world data. According to Gotvald et al.
(2009), a gaged station is considered near an ungaged site if the drainage area of the
ungaged site is within the range of 50% to 150% of the drainage area of the gaged
station. To properly incorporate gaged data into flow estimates at nearby ungaged



sites, Gotvald et al. (2009) combined two estimates of the peak flow from the gaged
station and ungaged site by weighting both flows with the drainage area difference
between the two locations, and defined the weighted estimate of the peak flow for a
P% chance exceedance at the ungaged site as follows:

2AA ( ZAA) Qp(g)w
+ (1= “Plgw
A A ) Qpo)r

QP(u)w = |: :| QP(u)r (6)

where AA is the absolute value of the difference between the drainage areas of the
gaged station and ungaged site, A, is the drainage area for the gaged station,
Qp(gyw is the weighted estimate of the peak flow for the P% chance exceedance for
the gaged station, and Qp(y), and Qp(,, are the peak-flow estimates for the P%
chance exceedance at the gaged station and ungaged site, respectively, calculated
using the applicable regional regression equations.

Gotvald et al. (2009) also combined two estimates of the peak flow from the
regression analysis and gage analysis at the gaged station using the variances of
prediction of both methods, and defined the logarithm of the weighted estimate of
the peak flow at the gaged station using the following equation:

Vo,p(9)r 108 Qp(g)s + Vi, P(g)s 108 QP (g)r
Vi,P(g)s T Vo, P(g)r

log @ p(gyw = (7)

where (Qp(g)s is the estimate of the peak flow at the gaged station from the log-
Pearson Type III analysis for the P% chance exceedance, and V,, Pg)yr and V, p(g)s
are the variances of prediction for the P% chance exceedance in log units at the
gaged station derived from the applicable regional regression equations and the log-
Pearson Type III analysis, respectively.

In order to solve for Q) p(u)w, which will provide the weighted flow at the area of



interest, Eqs. (6) and (7) are combined to obtain the following equation:
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g
Q/p(g)s = log QP(g)sa le(g)r = log QP(g)T7 and le(u)r = log QP(u)r7 and, by taking the
logarithm of both sides of Eq. (8), the following equation is obtained:

) 109P@s \ /
ot 10Q/P(g)r + QP(U)T

= log [a+ b+ 107w "0r) | 4 @l (9)

where a = ,b=1—a,and c =

Q/P(u)w = IOg

3. Derivation of the 1-percent plus flow

By using the equations provided by USGS SIR reports, the 1% flow can be
determined for an ungaged site located near a gaged station. However, no direction
is provided for how to determine the predictive uncertainties associated with the 1%
flow. As explained earlier, the predictive uncertainties are necessary to determine the
1% plus flow as required by FEMA. This section analytically derives an equation to
compute the 1% plus flow at ungaged sites near a gaged station using the propagation
of errors (Birge, 1939).

Assuming that Q;D( s (the log-Pearson Type III analysis), Q’P( g and Q/P(u)r (the
logarithm of two regression flows at the gaged station and ungaged site, respectively)
are uncorrelated, cross terms in the propagated standard deviation equation (Birge,
1939; Ku, 1966; Tellinghuisen, 2001) are canceled out and the following equation is



obtained:
2 2 2
0/ _ an u)w 0_/ 2+ aQIP(u)w 0_, 2+ aCQIP(u)w 0/ 2
P(u)w a@p(u)r P(u)r anp(g)s P(g)s aQ/p(g)r P(g)r

where ag(u)w, a},(u)r, 0},( 9)s: and 0},( o) are the standard deviations of Q})(u)w, Q},(u)r,
Q’P( o) and Q’P( o) Tespectively.

The standard errors of Q’P(u)r and Q’P(g)r can be defined using the equation for
the standard error of prediction in Gotvald et al. (2009) as follows, respectively:

0.5

(10)

UP(u)r = SP(U)T’ (11)

and
/

UP(g)r = SP(Q)T" (12)
where Sp(,), and Sp(,), are the standard errors of prediction for the ungaged site and
gaged station, respectively, for the P% chance exceedance, and can be calculated
using Eq. (5).

The output from PeakFQ can be used, once the confidence interval has been
adjusted to 0.84 (i.e., 84%) in the “Output Options” tab, to calculate the standard
error of QIP(g)s as follows:

Q84%UL

YP(g)s
13
QP (9)s ( )

where Q84%UL is the 84% upper confidence limit of @ p(y)s from the PeakFQ output.

6Ql P(u)w aQP(u)w and aQP(u)w
8C‘-’)P(u )r ’ 662}3(9)5 6CgP(g)r

O' 10g Q84%UL le(g)

Further, the partial derivatives can be expanded as

follows, respectively:

a62/]3(u)w . g |:10g (Cl +b IOC(QP(Q)S_QP(Q)T)> + QIP(U)T:|

=1, (14)
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equation for the standard deviation of Q}J(u)w is obtained as follows:

By letting d = = and plugging Eqgs. (11)—(16) into Eq. (10), the

0.5
84%U L

2
2 P(g)s 2
O-ED(U)”LU = (SP(U)T) + d2 <10g %) + (SP(Q)T) . (17>
g)s

The logarithmic 1% plus flow is defined as the upper 84% confidence bound of
the logarithmic 1% flow in a one-tailed test. When there is a gage station near
an ungaged site of interest, Eq. (6) should be used with P = 1% to compute the
weighted flow estimate for the 1% flow. In this case, the probability of the true
logarithmic 1% flow being less than the upper confidence bound in a one-tailed test
has to be 84% (i.e., one standard deviation away from the logarithmic mean). That
is,

108 Q1%+ (uyw = 108 Q1% (wyw + T1% () (18)



where Q191 (uyw is the 1% plus flow, Qiowyw is the 1% flow, and J’l%(u)w is the
standard deviation of log Q1% (u)w. From Eq. (18), the following equation for the 1%
plus flow is obtaind: ,

Q1%+ (wyw = 1071%0w Q194 (400 (19)

4. Application

To provide an example for the 1% plus flow calculations given above, the Ches-
tatee River in Lumpkin County, Georgia, shown in Figure 1 is used as a case study.
The Chestatee River is located in a rural, mountainous area of north Georgia and
its drainage area ranges from 88 to 622km? within Lumpkin County. There are
total 73 drainage basins in this study area including one USGS gage station and 72
ungaged sites. The USGS gage station 02333500 is located on the Chestatee River in
Dahlonega, Georgia, and has a drainage area of 396 km?. Therefore, according to the
Interagency Advisory Committee on Water Data (1982), drainage areas along the
Chestatee River ranging from 198 to 594km? (i.e., 50%—150% of 396 km?) should
be adjusted using the gage data. For this case study, 55 drainage basins fit this
criterion including the gage station while the other 18 drainage basins are ungaged
and not affected by the gage data. In this section, a location with a drainage area
of 348 km? shown in Figure 1 was examined as sample calculations, but all the 73
drainage basins were analyzed using the same method and their results are shown
and discussed in Section 5.

Figure 2 shows the flowchart for calculating the 1% plus flow for the study area.
The regression equation for the 1% flow for the study area is defined in Gotvald et al.
(2009) in the United States system of units, which is converted to the international
system of units as follows:

Qo = 10[~1.7935+0.0289(PCT1)+0.02711(PCT2)+0.01963(PCT3)+0.0258(PCT4)+0.0286 (PCT5)]
, =

s DA0-594-+0.00119(PCT2)+0.00139(PCT3)] (20)

where Q9 is the 1% flow in m?®/s, DA is the drainage area in km? and PCTy,
PCTy, PCT3, PCT,, and PCT}j are the area percentages in hydrologic regions 1,
2, 3, 4, and 5, respectively. Table 1 shows the parameter values for the 1% flow
regression equation for the gage station and ungaged site. The drainage area for the
gage station, Ay, is 396km? and the difference in drainage area between the two
locations, AA, is 48 km?.

Table 1: Regression parameters for the 1% flow regression equation for the gage station and ungaged
site. DA in km? and PCT;-PCTj in %.

Location DA PCT, PCT, PCTj PCTy PCT;
Gage station 396 69.9 30.1 0 0 0
Ungaged site 348 65.7 34.3 0 0 0

The additional variables required to complete the flowchart in Figure 2 are the
average variance of prediction of the 1% regression equation, V), 19, = 0.0305,
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A USGS 02333500 Gage Station
E Study Area
D Gage Drainage Area

— Chestatee River s Kilometers
|:| Lumpkin County 0255 10 15 20

Figure 1: Ungaged site on the Chestatee River in Lumpkin County used for sample calculations.
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Regression
parameters

Calculate the 1%
regression flow

Voa%(g)r
(Table 7)

| @15(g)r using Eq. (20) )

Run PeakFQ to

obtain Ql%(g)s

84%UL
and Q7o/ (0)s

\_

Vp1%(g)s
(Table 9)

A

Calculate the 1%
weighted flow

-- | Q1%(gyw using Eq. (7)

J

7%, U
(Table 8)

Calculate the 1%
weighted flow

| Q1% (u)w sing Eq. (6) )

Calculate the 1%
regression flow

Q1% (w)r using Eq. (20)

Calculate a, b, c,

and d defined in
Sections 2.2 and 3

l

Calculate the
standard errors

~
J

- — > « — — — —
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using Eq. (5)

i

Calculate the stan-

X; in

Eq. (22)

dard deviation .
O'p(uyw 18ing Eq. (17)

J

Calculate the 1%

plus flow Q19+ (wyw
using Eq. (19)

Figure 2: Flowchart for calculating the 1% plus flow for the study area. Table numbers in paren-
theses refer to Gotvald et al. (2009).
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the variance of prediction values for the USGS 02333500 gage station, V), 19(¢)s =
0.0038, the model error variance of the 1% regression equation, v? = 0.0294, and
the covariance matrix for the regression coefficients, U in Eq. (21), which are all
provided by Gotvald et al. (2009) in Tables 7, 9, 8, and 8, respectively.

1.50e—3 —3.0le—4 —4.79¢e—6 —9.19e—6 —6.05e—6 —2.51e—6 2.10e—6 1.66e—6 |

—3.0le—4 1.28¢e—4  —2.00e—7 1.76e—6 2.16e—6 5.74e—8 —1.11e—6 —1.37e—6

—4.79e—6  —2.00e—7 8.49e—8 8.16e—8 4.14e—8 1.86e—8 —4.95e—9 5.64e—9

U= —9.19e—6 1.76e—6 8.16e—8 4.18e—7 7.54e—8 1.95e—8 —1.42e—7 —1.56e—8
—6.05e—6 2.16e—6 4.14e—8 7.54e—8 1.21e—6 5.40e—9 —2.73e—8 —5.62e—7

—2.51e—6 5.74e—8 1.86e—8 1.95e—8 5.40e—9 2.85e—7 4.71e—10 6.63e—9

2.10e—6 —1.11le—6 —4.95¢—9 —1.42e—7 —2.73e—8 4.71e—10 7.52e—8 1.54e—8

1.66e—6 —1.37e—6 5.64e—9 —1.56e—8 —5.62e—7 6.63e—9 1.54e—8 3.16e—7

(21)

For the study area, the parameter vector for site 7, x;, is defined as:

x; = [1, log DA — 0.4133, PCT;, PCT,, PCT5, PCT;,
(log DA — 0.4133) - PCT5, (log DA — 0.4133) - PCT3]. (22)

By performing the calculations shown in Figure 2 at each applicable ungaged
site in the watershed, a series of flows was generated for the 1% plus flow along the
Chestatee River whose flows are weighted by the nearby gage station. These flows
were then taken into the Hydrologic Engineering Center’s River Analysis System
(HEC-RAS) (Brunner, 2010) to generate the 1% plus flood elevations, which were
used to delineate the floodplain for the 1% plus flow using ArcGIS (Esri, 2011).

5. Results and discussion

The parameter vectors for the ungaged site and gage station are x,), = [1,
2.128, 65.7, 34.3, 0, 0, 73.03, 0] and x(,, = [1, 2.18, 69.9, 30.1, 0, 0, 65.76, 0],
respectively. Also, the PeakF(Q program calculates the estimated peak flow from the
log-Pearson Type III analysis Q194 = 670m?/s and its 84% upper confidence limit
Qf?g&gﬁ = 765m?/s. Tables 2 and 3 summarize calculation results of the coefficients,
the standard errors of prediction, and the 1% plus flow for the study area.

Table 2: Calculation results of a, b, ¢, d, and the standard errors of prediction.

a b c d Sl%(u)r Sl%(g)r
0.24 0.76  0.889 0.72 0.1731 0.1731

Table 3: Calculation results of the 1% plus flow in m3/s for the study area.

Qagyr  Q1%(g)w Q%twyr  Qaww  Qi1%+(ww
477 646 445 564 929

Figure 3 provides a comparison of the flow calculated using the regression equa-
tion in Eq. (20), the weighting equation in Eq. (6), and the equation for the 1%
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plus flow in Eq. (19). The regression equation predicts the lowest flows which are
193m? /s lower than the gage data at the drainage area of 396 km?. The weighting
equation increased the predicted flows, with the largest difference between the flows
from the weighting and regression equations occurring at the gage station where
the flows are most heavily weighted towards the gage data. The effect of the gage
data decreases as the location of an ungaged site moves away from the gage station
and completely vanishes at 50% and 150% of the drainage area of the gage station
because the first term in Eq. (6) becomes 1 and the second term is canceled out,
yielding Q19w = Q1%w)-- However, Figure 3 does not show ungaged sites exactly
at the 50% and 150% locations because there was no need to introduce flow changes
at these exact locations for modeling purposes.

1,200 ‘
) Peak 1% plus flow
—~— 1% regression flow A
-~~~ 1% weighted flow AT
1,000 | - ~ 1% plus flow A T
' """"" Q,
E ......
m 800
~
[e]
g Peak 1% weighted flow
A e
2 600 -
—
400 - -y .
+ Gage station
o Downstream-most weighted site
e Upstream-most weighted site
200 o First sites unaffected by the gage |

100 200 300 400 500 600
Drainage area (km?)

Figure 3: Discharge comparison along the Chestatee River.

The weighting method using Eq. (6) introduced a peak 1% weighted flow at
the gage station as shown in Figure 3 because the 1% flow estimated using gage
analysis, (Q19%(g)s, is much higher than the flow at the same location obtained using
the regression equation, Qqy()r, such that the weighted flow Q195w in Eq. (7)
becomes larger than the regression flow at the downstream limit of the weighting
method. Because of this peak 1% weighted flow at the gage station, the 1% weighted
flow decreases as the drainage area of an ungaged site becomes larger until it reaches
150% of the gage’s drainage area, after which no more weighting is applied and the
1% regression flow starts increasing once again. Similarly, if a gage station measured
lower flows than those predicted by the regression equation, the 1% weighted flow
can generate a valley between 50% and 150% of the gage’s drainage area. A peak or
valley in the weighted flow causes estimated flows at downstream sites to be lower
than those at upstream sites.

The predictive uncertainties of the 1% flows range from 49% at the downstream-
most weighted site (583 km?) to 73% at the gage station (the peak 1% plus flow at
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396 km? shown in Figure 3), to 65% at the upstream-most weighted site (348 km?).
The ungaged sites affected by the gage data have a higher uncertainty when com-
pared to those sites not affected. This phenomenon seems to be contradictory be-
cause uncertainties should decrease as more data are collected and used for predic-
tion. In this case, the ungaged sites within the effect of the gage station use regional
flow data used for developing the regression equation and flow data measured at
the gage station while the ungaged sites farther from the gage station only use the
regional flow data. However, these contradictory observations can be explained by
the weighting process of the regression flow and gage analysis. As the difference
between the flows measured at the gage station and the flows predicted using the
regression equation increases, so does uncertainty in the weighting process of the two
flows because the expected flow becomes more uncertain when the two flows diverge.
Combining the two flows does not necessarily reduce uncertainty, but can even in-
crease it because of uncertainties in the weighting method itself. This uncertainty
is propagated to the 1% plus flow and is further aggravated by structural errors
in the flow estimation and gage analysis methods, and uncertainties in gage data.
However, if only one method of flow estimation was used without any weighting,
collecting more data could help reduce predictive uncertainties.

Figure 4 shows a sample of the 1% and 1% plus floodplains, which were mapped
using the 1% weighted flows and the 1% plus flows, respectively. Flood elevations
were taken from the output of the HEC-RAS model and the Triangulated Irregular
Network (TIN) of the water surface elevation was created by linear interpolation.
The ground elevation TIN was then subtracted from the water surface elevation
TIN to find intersecting polygons between the two TINs where the water depth is
0. These intersecting polygons represent a floodplain. This procedure was repeated
for both of the 1% weighted and 1% plus flows to map the two floodplains.

Despite the large uncertainty range of the 1% flows from 49% to 73%, the area
difference between the two floodplains is only 13% between the downstream-most
and upstream-most weighted sites. Jung and Merwade (2015) previously explained
this phenomenon as an impact of the channel geometry on the change in flooding
area caused by flow changes. At the location shown in Figure 4, water surface
elevations varied by 1.8 m on average between the 1% and 1% plus flood elevations,
which is a 30% increase of water depth, yet the change in floodplain area was 11%
because of the steepness of the channel geometry. The 11% increase in floodplain
area has different impacts on the three buildings shown in Figure 4. Building 1 was
outside the 1% floodplain, but was flooded by the 1% plus flow whereas building 2
was not affected by the increased flood elevation and building 3 was always inside
both floodplains. In a location with less mountainous terrain and larger floodplains,
the 1% plus floodplain could have much larger impacts.

In this study, an equation for calculating the uncertainties associated with 1%
flow estimation including the flow weighting process, regression equations, and gage
analysis was analytically derived. Using the derived equation, a new method was
introduced as a flowchart for calculating the 1% plus flow, which is required to
derive the 1% plus flood elevation that FEMA has recently added to their Risk
MAP flood risk products for all riverine studies. It was shown that uncertainties in
the regression equations and gage analysis are propagated and aggravated through
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Figure 4: Section of the 1% and 1% plus floodplains along the Chestatee River. Esri (2016) was
used to show the imagery basemap.
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the flow weighting process, but the impact of increased uncertainties on the 1%
floodplain is greatly affected by the geometry of the study area. Although the
watershed in the case study is located in north Georgia, the method developed
in this study can be used in other states than Georgia when appropriate regional
regression equations and variances are used for calculating the 1% plus flow using
the flowchart in Figure 2. This method can be a useful tool to quantify uncertainties
associated with the flow weighting method introduced by USGS using the regression
equation and gage analysis.

With the ability to quantify uncertainty surrounding flood predictions using the
proposed method, the 1% plus floodplain can be provided to communities as a tool
to help communicate to the public the additional risk caused by the uncertainty
of the flow prediction method and collected data. Local governments can employ
the method to encourage more property owners vulnerable to serious flood risks
outside the traditional 1% floodplain to invest in flood insurance for their homes
and businesses, and to identify additional structures that may need to be evacuated
in a flood event to prevent loss of life.

In addition to risk communication to the public, communities can better plan for
and manage their flood risk by further understanding the uncertainties of the mod-
eling results and floodplains provided to them. Furthermore, government agencies
such as FEMA and USGS can identify and prioritize areas with excessive floodplain
uncertainties that require improved data collection for better gage analysis and re-
vision of the regional regression equations. For instance, the 1% plus floodplain de-
veloped using the proposed method can help FEMA administrators identify highly
sensitive communities where small uncertainties can propagate into large changes in
the floodplain that could affect many more property owners and residents. FEMA
can utilize these studies when investing more funding into more detailed and accu-
rate studies for these highly sensitive communities, creating the most accurate flood
map possible in order to efficiently and effectively communicate risk during flood
events. The process of quantifying the risk uncertainty and identifying areas in need
of improved studies will allow FEMA to spend its funds more effectively on updated
studies that will provide the most benefit to the largest number of people.

6. Conclusions

This study discussed the importance of evaluating uncertainties in 1% flow es-
timation and introduced the 1% plus flow that FEMA has recently added to the
Risk MAP flood risk products for all riverine analyses. The concept of the 1% plus
flow is a new idea for FEMA that offers the potential for greatly improved risk
assessment, study prioritization, and future cost-savings. When a gaged station is
available nearby, the 1% flow estimated using regression equations is recommended
to be weighted by the gage analysis. Uncertainties in the regression equation and
gage analysis propagate to the final 1% flow estimate in this weighting process. An
equation for calculating the standard error of prediction in 1% weighted flow estima-
tion was analytically derived and was used to develop a process for calculating the
1% plus flow for a case study. Because of the steep nature of the river geometry, the
impact of increased uncertainty on the 1% floodplain was not significant in terms of

16



floodplain area, but the impact of increased water depths on nearby buildings was
not necessarily negligible. Since a small increase in uncertainty could have a larger
impact on the 1% floodplain in a relatively flat terrain, care needs to be taken when
assessing uncertainties in flood studies. The method developed in this study can be
used as a tool by communities to analyze and manage their own risk based on the
uncertainty of data provided to them by FEMA during the Risk MAP process. As
the use of the 1% plus flow becomes more widespread, it can assist communities to
better plan for and manage their flood risk by further understanding the uncertain-
ties of the floodplains provided to them. Further, the proposed method can help
FEMA and communities to identify and prioritize areas with excessive floodplain
uncertainties in order to pinpoint areas that require improved data generation to
create more precise floodplains.
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